
Dimensional analysis and scaling laws

1. Dimensional analysis
One of the simplest, yet most powerful, tools in the
physicist’s bag of tricks is dimensional analysis1. All
quantities of physical interest have dimensions
that can be expressed in terms of three fundamen-
tal quantities: mass (M), length (L) and time (T).

We express the dimensionality of a quantity by
enclosing it in square brackets. Thus, for velocity
(change of position divided by change of time) we
write

[v]  =  LT−1 .

Similarly acceleration (change of velocity divided
by change of time) has dimensionality

[a]  =  


dv
dt



  =  LT −2 .

From Newton’s Second law of Motion, 

F
→
  =  ma

→
 ,

we see the dimensions of force are

[F]  =  M ⋅ [a]  ≡  MLT  −2 ;

and since work (energy) is force times distance,

[E]  =  [F] ⋅ L  ≡  ML2T −2 .

Dimensional analysis has three important applica-
tions: 

1. We can avoid algebraic errors by requiring the
dimensions of the quantities on two sides of an
equation or inequality to be consistent.

2. We can reduce the number of independent
parameters in a calculation by re-expressing the
problem in terms of relations between dimen-
sionless quantities (pure numbers).

Thus, consider the problem of a physical pendu-
lum, whose equation of motion in the absence of
driving torques is

I 
d2θ
dt2

  +  mgl sinθ  =  0 ;

Let us redefine the time in terms of a dimensionless
variable τ and a quantity ω with dimensions of
frequency (note θ is already dimensionless because
it is defined as a ratio of lengths):

t  =  
τ
ω

 .

Then the original equation becomes

Iω2

mgl
 
d2θ
dτ2   +  sinθ  =  0 .

If we now choose ω so that

Iω2

mgl
   =  1

our new dimensionless equation is

d2θ
dτ2   +  sinθ  =  0 .

We can make sure we have not made an algebraic
error by checking the dimensional consistency of
the relation

Iω2

mgl
   =  1 :

Since [I]  =  ML2 and [g]  =  LT−2 we have
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1. In biological and physiological applications dimensional analysis is often called allometric scaling.







Iω2

mgl



  =  ML2  T−2  M−1  L−1T2  L−1

=  M0L0T0  =  constant .

Hence the expression is dimensionally consistent
and contains no obvious algebraic errors2.

3. We can “solve” certain physical problems with-
out actually doing the detailed calculations
needed for a complete solution.

Thus, suppose we want an expression for the fre-
quency ν of a simple pendulum. The frequency can
only depend on the dimensional parameters of the
system: the mass m of the bob, the length λ of the
string, and the acceleration g of gravity. We sup-
pose the answer to be some pure number (such as
π or √2) times a product of the parameters each
raised to some power:

ν  =  constant × mα λβ gγ .

Now require the dimensional consistencyof both
sides by putting square brackets around all dimen-
sional quantities3:

[ν]  =  [m]α [λ]β [g]γ

which can be rewritten

M0 L0 T−1  =  Mα Lβ 


L
T2




γ

  ≡  Mα Lβ + γ T−2γ .

Exponents of like dimensional quantities on both
sides of this equation must agree. In general this
yields three equations:

  0  =  α
  0  =  β + γ
−1  =  −2γ .

The solution is α = 0 , β = −1⁄2 , γ =  1⁄2 . The fact
that the exponent of M is zero means that the
period does not depend on the mass of the pendu-
lum bob4. Hence our formula for the pendulum’s
frequency becomes

ν  =  constant × 


g 
l




1⁄2

,

a well-known formula. (In fact, for a pendulum
started at zero angular velocity from initial angle
θ0 the constant is (for small θ0)

√2
4

 



∫  

dθ
√ cosθ  −  cosθ0

  
0

θ0 



 −1

  ≈  
1

2π

but dimensional analysis does not reveal this—to
learn its value one must actually solve the differ-
ential equation of motion.)

Another point worth making in this context: if
there is more than one dimensional quantity of
each genre—for example the radius r of the bob,
the mass µ of the string—then the above result
must be multiplied by an unknown function of
dimensionless ratios:

ν  =  


g
l




1⁄2

 F(µ ⁄ m, r ⁄ l, … ) .

Surface waves in deep water
We can use dimensional analysis to determine the
speed of surface waves on deep water. The quanti-
ties in the problem are the wavelength λ, the
density ρ of the fluid, and the acceleration of
gravity, since the forces are again gravitational.
The dimensional equation is

v  =  constant × λα ρβ gγ .
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2. Of course this test will not catch errors of sign or purely numerical factors such as 2 or π.
3. We drop the constant because it has no dimensions. 
4. This is characteristic of problems involving the gravitational force.



We are tacitly assuming here that the water depth
is so great compared with the wavelength as to be
effectively infinite; and that the viscous forces may
be ignored. Converting this to dimensional terms
we have

L1 T−1 M0  =  Lα Mβ L−3β Lγ T−2γ ;

enforcing dimensional consistency gives, as before,
three equations:

  1  =  α −3β + γ
−1  =  −2γ
  0  =  β .

The solution is γ = 1⁄2 , α = 1⁄2 , β = 0 . Thus there
is no dependence on the density of the fluid;
instead the wave speed is

v  =  constant × √ gλ  .

Again this agrees with the result one obtains by
solving the partial differential equations of fluid
mechanics, up to the unknown numerical con-
stant.

2. Allometric scaling
Insects have nothing to fear from gravity. No fall
in the Earth’s gravitational field can kill an insect.
A mouse can fall down a 1000 foot deep mine shaft
and suffer a minor shock, but no lasting injury,
when it hits. A rat, on the other hand, might well
die; a man would certainly die; and a horse would
splash.

Are mere bugs and mice so much sturdier than
larger animals, or is something else taking place
here? Galileo Galilei, the great Florentine scientist,
was the first to point out that similar objects, no
matter what their shapes, can be related by scaling
laws5. These laws explain why an elephant cannot
look like an enlarged mouse, why a giant human
necessarily has certain problems, and why there are
ultimate limits to the sizes of animals, plants and
structures. 

Strength to weight ratio
To understand this, consider first two cubes. The
first is 1 meter on a side, the second 2 meters on a
side. The volume of the first is obviously 1 m3.
That of the second, however, is 8 m3. The same
holds true of spheres: a sphere of radius 2 m has 8
times the volume of one with a 1 m radius.

In fact, the same is true of the volumes of similar
objects of any shape: if one is twice as large in any
dimension—length, width, thickness—its volume
will be 8 times that of the smaller object.

Suppose the two objects are made of the same kind
of stuff: for example, gold. Since the density of a

material does not change with size or shape, the
object that is twice as tall will have eight times the
mass. If my height were doubled to 12 feet and all
my other dimensions were also doubled, then my
weight would be nearly 1 ton. Similarly, were I
shrunk to three feet in height, with my other
dimensions kept in proportion, I would weigh
about 32 pounds.

Exercise

Given the above information, what do I weigh?
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5. Galileo Galilei, Dialogue Concerning Two New Sciences (1638).



Structural strength
The strength of tendons and bones increases as
their cross-sectional area—that is, roughly as the
squares of their linear dimensions. Similarly, the
force a muscle can exert in tension also scales as
L2. Bone, like any other structural material, has
strength proportional to its cross-sectional area. If
an animal is scaled up in size keeping its bones in
proportion, then at twice the linear size the
strength, relative to its weight, of its bones is only
half as great as those of the smaller animal. More
precisely, the strength to weight ratio of geometri-

cally similar animals scales as L−1 or M
−1⁄3.

This poses a problem for the larger animal—it has
to more carefully avoid bangs and bumps than its
smaller counterpart, for fear of breaking bones or
tearing tendons6.

Large animals—rhinoceri, elephants, dinosaurs—
solved this evolutionary problem by changing their
proportions. Their bones are proportionately
much thicker than those of smaller animals. And

so are their muscles, whose driving power is pro-
portional to their cross sections. But there is a limit
to the thickness that bones or muscles can de-

velop, hence there is a limit to the size of land
animals. This seems to have been reached in the
largest dinosaurs, which may have weighed 60
tons. Some schools of thought have believed such
large sizes were possible only for quasi-aquatic ani-
mals, who could have been partly supported by the
water of the lakes they waded in.

Suppose the average density of bone is three times
that of water (the density of most rocks is about
that, e.g.). Let

x  =  
Vbone

V
  =  

Abone Lbone

V
 ;

then the cross-sectional area of the bone (struc-
tural strength, that is) must be proportional to the
weight of the animal:

σmax Abone  =  m g  =  g 3ρ xV  +  (1 − x)ρ V
where σmax is the maximum stress a bone can bear.
Moreover,

Lbone  =  λ V
1⁄3 ,

since the overall length of the bones in the skele-
ton must be proportional to the typical linear
dimension of the animal. Thus

σmax Abone Lbone

ρgλL V
  =

df

  x 
Lmax

L
  =  1  +  2x

hence

mbone

m
  = 3x  =  

3
2

 
L

Lmax
 

1  −  

L
Lmax





−1

 ,

where Lmax is a constant with dimensions of length.
For small animals, therefore, the ratio of bone mass
to overall mass increases linearly with the linear
dimension of the animal. Eventually, however, just
to keep the animal from collapsing into a puddle
the animal must become all bone—in other words

Galileo’s depiction of the bones of light and
heavy animals. (From Dialogue on Two New Sci-
ences.)
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6. This pertains to football players as well. The greater size of today’s players implies a greater rate of in-
jury and a shorter playing career.



it has no room for muscles or organs. The result is
shown below.

Whales live in water, hence are not supported by
immense bones but rather by buoyancy. Their
bones are mostly levers that muscles are attached
to. The largest whale ever caught would have
weighed about 350-400 tons (length 110 feet).
When a whale beaches accidentally or because of
disease, it quickly suffocates under its own weight
because its supporting structure is inadequate in
the absence of buoyancy. The ability of whales to
bypass the structural restrictions of self-support
was also noted by Galileo5.

Terminal velocity
Now, what about a falling mouse, horse or ele-
phant? At low speeds viscosity dominates; but at
higher speeds the air’s resistance to movement
through it is proportional to cross-sectional area.
But whereas an elephant-sized mouse would be
some 100 times taller than a mouse, and its cross
section therefore 1002 = 10,000 times greater, its
mass would be 1003 = 106 times as large, hence its
ratio of cross-section to mass would be 100 times
less.

How does this affect a free fall? The force of gravity
is 

W  =  −m g ,

and that of air resistance is

FAir = ΓA v2

where Γ is a constant proportional to the air den-
sity. Dimensional analysis would then say

[v]  =  LT−1M0  =  g
α mβ Γγ Aγ


or

v  =  constant × 


m g
ΓA





1⁄2

  ∝   L
1⁄2.

We can reach the same conclusion using Newton’s
Second Law of motion

FTot  = W  +  FAir  =  m a

or

dv
dt

  −  
Γ
m

 A v2  =  −g .

This equation can be integrated by separation of
variables:

dv
λ v2  −  g

  =  dt

where λ  =  Γ A ⁄ m , giving

v(t)  =  − 


mg
Γ A





1⁄2

 tanh(t ⁄ τ)

where τ  =  √ g Γ A ⁄ m  is a characteristic time
(that could also be found by dimensional analysis).
Initially the gravitational force accelerates the ob-
ject downward with acceleration v

.
  =  −g. As it

picks up speed, air resistance becomes important,
so the net force decreases and the acceleration v

.

falls to zero. When this happens, the object re-
mains at a constant speed, the terminal velocity.
This is shown on the following page.

The asymptotic speed of impact increases with the
ratio of weight to surface area, which means it
increases as the square root of the linear size of the
animal:

vterm  ∝   L
1⁄2 .

How high can you jump?
To jump a height h an animal must expend energy

E  =  mgh .
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To accomplish this it must exert a force F over a
distance D so that

F ⋅ D  ~  mgh .

Muscular forces scale as the cross-sectional area of
the muscles involved, i.e. as L2 where as usual, L is
the linear size of the animal. Obviously D, the
distance the muscle contracts, also scales like L.
The mass scales as volume, L3, so we find

h  ~  
L3

L3 × constant

—the height of the jump is independent of the
animal’s size! Or to put it another way, scaling
suggests that a flea can jump as high as a man, and

vice versa7. Paradoxical as this may sound, it is
indeed correct. A flea can jump about 20 cm
straight up, and a human about 60 cm. While the
(human) world record in the (running) high jump
exceeds 230 cm, such jumps are accomplished by
converting forward motion into vertical motion8,
as well as by adroitly timed movements of arms and
legs, that allow the athlete’s center of mass to
remain well below the bar at all times.

Basal metabolism
What determines the ultimate length a whale can
grow to? Several factors combine to limit its size
(which may be the largest possible size for any
mammal): the need for oxygen and food increases
as the cube of its length, but the generation of
energy to sustain life also means the production of
waste heat. The surface of a whale must be sleek
so it can swim rapidly. This means it can not have
projecting radiator fins (other than its swimming
apparatus, of course). But then the whale’s ability
to get rid of its excess body heat, even in very cold
water, is limited by the surface area, which in-
creases only as the square of its length.

Basal metabolism of mammals (that is, the mini-
mum rate of energy generation of an organism) has
long been known to scale empirically as

B  =
df

  
dQ
dt

  =  const.  (Mass)
3⁄4

 .

The origin of this relation, graphed on the follow-
ing page, sometimes called Kleiber’s Law, has re-
cently been explained by West, et al.9 in terms of
optimizing the pumping efficiency for fluid flow in
the circulatory and pulmonary systems of mam-
mals. They note that the terminus of a capillary or
alveolar duct must necessarily be of constant size,
independent of animal mass. Since the arterial
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7. The first person to analyze this seeming paradox was Giovanni Alfonso Borelli (1608-1679) in his book
De motu animalium.

8. Indeed, the jumper is using his leg as a sort of pole-vaulting pole.
9. G.B. West, J.H. Brown and B.J. Enquist, Science 276 (1997) 122.



network and bronchial systems each have a tree-
like structure, and since the sub sections of the tree
are self-similar (“fractal”) what determines the size
of the entry—the aorta or the trachea, respec-
tively—is the ratio of branch diameter to branch
length, and the fact that the branches are (almost)
always bifurcations10. When this ratio is chosen to
minimize resistance to flow, hence pumping power,
Klieber’s Law emerges. 

The largest whales are certainly at the ragged edge,
maintaining a precarious balance between energy
production and heat dissipation. When a whale
dies (by being killed by hunters, e.g.) and its heart
stops circulating the blood (which acts like the

coolant in a radiator), its flesh actually cooks within
its jacket of blubber because the residual metabolic
heat production has no way to escape. The tem-
perature rises, therefore (the onset of decay from
bacterial action accelerates this process). Some of
the old-time whalers apparently enjoyed whale
meat “cooked” in this fashion11!

Lifetimes
Suppose the heart- and blood volumes both scale
proportionally with the volume of the animal. The

rate of circulation, 
dV
dt

, must be proportional to the

basal metabolism, so we can say the frequency at
which the heart beats is

f ⋅ Vheart  =  
dVblood

dt
  =  c ⋅ M

3⁄4 .

But since the mass is proportional to the volume
we have a scaling law

f  ~  M −1⁄4 .

If we suppose that each animal’s heart beats a fixed
number of times during its lifetime,

N  =  f ⋅ τ  =  constant ,

we see that lifetimes should scale as

τ  ~  M
1⁄4 .

As the graph to the left shows, this “law” is satisfied
very well empirically.

Brain size
Interestingly, the brain mass also scales as body
mass to the 3⁄4 power,

Mbrain  ~  M
3⁄4

(see figure on following page).

The data fall on a band with slope 3⁄4 on a log-log
graph, with primates occupying the upper edge of
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10. The physics of fluids determines that bifurcation is better than, say, trifurcation.
11. Herman Melville, Moby Dick.



the band, and modern humans represented by a
point well above the band. That is, Homo sapiens
has a substantially larger ratio of brain to body mass
than any other species.

Two interesting questions arise from this empirical
relation. First, why—like Klieber’s Law for basal
metabolism—is the power 3⁄4 ? And second, why
is the human brain so much larger (1.5−2× larger)
than the empirical scaling would predict?

Much of the brain’s computational power is de-
voted to muscular control. An elephant’s trunk,
e.g. has 6 major muscle groups divided into about
105 individually controllable muscle units. Its brain
weighs 3.6–5.4 kg. For comparison, there are only
639 muscles in the human body, and human brains
weigh about 1.3 kg. 

Kleiber’s Law for basal metabolism followed from
the self-similar character of arterial or bronchial
networks9. Similarly, the density of neuromuscular
junctions is presumably constant; however to op-
timize the power demand of the brain segment that
controls the musculoskeletal system, requires the
number of neurons per unit of muscle to diminish

with body size. This optimization can be effected
via bifurcation of axons—that is, the neural net-
work forms a self-similar bifurcating tree like the
arterial network, where the constraints on trans-

mission of nerve impulses determine the
scale of bifurcations.

Among mammals, apes, elephants and

whales have brains larger than the M
3⁄4 fit

would predict. When we examine the ele-
phant brain we see it has massive temporal
lobes and huge sections devoted to control-
ling the trunk muscles. The temporal lobes
provide the proverbial “elephant’s mem-
ory”12; and the sections controlling the
trunk musculature have to be enormous be-

cause this is the animal’s  most vital organ13. Not
much brain is left over for abstract reasoning, and
elephants do not seem to have such ability. The
dolphin and orca (killer whale) are fast swimmers,
and also possess extremely sophisticated sonar.
They achieve their speed by constantly adjusting
thousands of subcutaneous muscles that cancel
out turbulence—and thereby greatly reduce drag.
The dolphin brain therefore devotes much of its
computatonal power to the sensory and feedback
control elements of the drag-reducing and sonar
systems. Though their brains are moderately larger
than humans’, dolphins’ intelligence ranks some-
where between wolves and chimpanzees14.

Since the central nervous system is a great con-
sumer of energy15, we conclude that evolutionary
parsimony gives animals the smallest possible
brains consistent with species survival. This ac-
counts for the brains (or lack thereof) of the rest
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12. …needed to recall the locations of oases and water holes along the migration paths that elephant herds
must follow.

13. Elephants with injured trunks soon die.
14. I feel impelled to add, however, that the killer whale has always impressed me as having human-level in-

telligence. Studies of their behavior in the wild reveal a level of planning and forethought that are un-
matched by any animal other than human beings.

15. Neurons require operating power 10× the average of other cells; moreover, the energy needed to create
a zygote’s central nervous system places severe demands on the mother during gestation.



of the animal kingdom,  but does not really explain
why humans took the odd evolutionary path that
led to intelligence. Perhaps that path was man-
dated by the development of the human hand,
with all that implies. 
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