
Physics 312 – Assignment 5

This assignment contains many short questions and a long one. Several questions are
taken from Bloom¯eld Section 11.2, with some changes.

1. (2 points) It is possible to combine the fundamental constants ~ and e (elementary charge)
to obtain a quantity with the dimensions of conductance. Using dimensional analysis, find
this ‘‘fundamental conductance’’ and compare it with that of one meter of copper wire hav-
ing a 1 mm radius, at room temperature. Recall that conductance is defined as the inverse
of resistance, 1=R: Do not confuse conductance with conductivity, or resistance with resis-
tivity.

The problem asks for a combination of ~ and e with dimensions of conductance; how-
ever, the ‘‘fundamental conductance’’ is usually given using h instead of ~. So your answers
may differ by a factor of 2¼ from what follows.

From V = IR we can determine the dimensions of R knowing that the voltage V
has dimension Joule=Coulomb and the current I has dimension Coulomb=second. Thus
we can conclude that R has dimension Joule ¢ second=Coulomb2. Recalling that h has
dimension Joule ¢ second and e has dimension Coulomb, we see that h=e2 has the same
dimension as resistance R. Finally, the conductance, being the reciprocal of the resistance,
has the same dimension as e2=h. (This quantity plays a key role in the Quantum Hall Effect,
the discovery of which won von Klitzing the Nobel prize in 1985, see Tipler, p. 803-4.)

The combination h=e2 has a value

h

e2
=

6:626 £ 10¡34 J ¢ s

1:602 £ 10¡19 C
= 2:58 £ 104 ; (1)

where  stands for ohms. The corresponding conductance is 3:88 £ 10¡5=. The resis-
tance R is related to the resistivity ½ through

R =
½L

A
; (2)

where L in the length of the wire and A its cross sectional area. (See Tipler, p. 721.) The
resistivity of copper is 1:7£10¡8  ¢m at 20± C. (See Tipler, p. 722.) Thus, the resistance
of the wire is

Rwire =
(1:7 £ 10¡8 ¢ m)(1 m)

¼(1 £ 10¡3 m)2
= 0:0054 ; (3)

and the corresponding conductance is 185=. The resistance of the copper wire is much
smaller (about a million times smaller) than the ratio h=e2; and the conductance of the
copper wire is correspondingly about a million times larger than e2=h.



2. (1 point) A current of 1 Ampere flows in a copper wire. In how many seconds will a
billion electrons pass through a given point on the wire?

One ampere corresponds to

1 A =

µ
1 C

s

¶µ
1 e

1:609 £ 10¡19 C

¶
=

6:215 £ 1018 e

s
: (4)

Since electrons are carrying the current above, 6:215 £ 1018 electrons will flow through a
given cross section each second. Thus the time for a billion electrons is

¡
1 £ 109e)

¢µ
s

6:215 £ 1018 e

¶
= 1:609 £ 10¡10s; (5)

or 0:16 nanoseconds.

3. (4 points) Thermal energy can shift some of the electrons in a hot semiconductor from
valence levels to conduction levels. What effect do these shifts have on the resistivity of
the semiconductor? In an intrinsic semiconductor or insulator, the resistivity ½ is found to
change by a factor f when the temperature T is reduced from 300± K to 150± K. Is f
greater or smaller than 1? What happens to ½ when T is reduced to 75 K? If the band gap
is 1.4 eV, compute ½150=½300 and ½75/½300.

A useful expression for the resistivity ½ is

½ =
me

ne2¿
; (6)

where we assume that the current is conducted by electrons and where e is the of charge an
electron, me the mass of an electron (sometimes it is replaced by what is called ‘‘effective
mass’’), n the carrier density i.e. the number of electrons that are ‘‘free’’ to move per unit
volume and ¿ is the relaxation time often thought of as the average time between collisions
(which are the source of friction or viscosity). (See Tipler, p. 735 or Serway, p. 627.)

The main effect of changing the temperature in a conductor is to change ¿ , but the main
effect in a semiconductor is to change n. If thermal energy shifts electrons to the conduction
level, it is adding to n and thus lowering the resistivity which varies in inverse proportion.

The resistivity ½ is found to change by a factor f when the temperature T is reduced from
300± K to 150± K, i.e. ½150 = f½300. Our argument proceeds: the higher the temperature,
the more electrons in the conduction band, and the lower the resistivity. Thus, ½300 < ½150

and f > 1. If the temperature is reduced further, the resistivity goes up even more.
The carrier density varies roughly as

n / exp

µ
¡ Eg

2kT

¶
; (7)

where Eg is the energy gap. (See Melissinos, p. 8 or the lecture notes on ‘‘Carrier Density.’’)
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So the resistivities are affected as follows
½150

½300

¼ n300

n150
¼ exp (¡Eg=2k (300±K) + Eg=2k (150±K)) ; (8)

so that
½150

½300

¼ e27 ¼ 5:3 £ 1011: (9)

Similarly
½75

½300

¼ e81 ¼ 1:5 £ 1035: (10)

(This last factor seems too high, and one assumes that other effects must enter to lower it.)

4. (2 points) Based on the result of problem 3, would heating the photoconductor in a
xerographic copier improve or diminish its ability to produce sharp, high-contrast images?
Explain.

Xerography exploits the fact that some materials are insulating in the dark and con-
ducting when exposed to light: the photons associated with visible light promote electrons
from the valence band to the conduction band. If the material becomes sufficiently hot, a
significant number of electrons may be excited into the conduction band by thermal energy.
Thus the material would be a slightly better conductor in the dark, and charges in the dark
regions (which we want to remain fixed to the drum to attract toner in the next stage of the
process) might leak away. Thus heating the photoconductor would diminish the ability to
create a sharp image.

5. (2 points) What is the maximum energy of a photon of visible light? How does it compare
with the typical band gap of (a) insulators and (b) semiconductors? How does this explain
the fact that typical semiconductors are opaque, while insulators can be clear or translucent?

The wavelength ¸ of visible light ranges from roughly 400 nm to 700 nm. The energy
of a photon is given by

E = hf =
hc

¸
; (11)

and so the energy of photons of visible light ranges from 4:97 £ 10¡19 J (3:10 eV) to
2:84 £ 10¡19 J (1:77 eV).

The band gap of carbon (C) in the diamond structure, which is an insulator, is 7 eV
(Tipler, Modern Physics, p. 336). The gap energy is larger than the energy of a photon in
the visible range, and photons therefore do not excite electrons from the valence band to
the conduction band. With no energy levels roughly hf away, most of the photons pass
through unabsorbed and hence diamond is clear.

The semiconductor silicon (Si) has an energy gap of about 1 eV and germanium (Ge)
has a gap of around 0:7 eV (Tipler, Modern Physics, p.337). The gap energies are less than
the energies of photons in the visible range. Therefore, light can excite electrons in the
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valence band into the conduction band, and so it does not pass through the material but is
absorbed (and later emitted). Light doesn’t pass through and the object is opaque.

Materials that are even better conductors are shiny. Why?
Just for comparison kT at T = 300 K is 0:026 eV ¼ 1

40 eV.

6. (2 points) Actually, good insulators can be opaque. Some, like dry wood or rubber,
consist of large molecules. Can you explain, qualitatively, how a solid consisting of large
molecules, or more generally with a complex structure, can be both opaque and insulating?

In the answer to the previous question we focused on the band gap energies, but there
are other energies or rather energy differences around, especially in substances which don’t
form crystals. If there are energies at or below the energy of visible photons, then photons
will be absorbed. (There are a few provisos, you can’t always get from one state to another
via a photon.) Organic molecules often have energies associated with vibrational modes in
the infrared region (which is why infrared spectroscopy is a useful tool in organic chem-
istry). Thus light is absorbed, and the materials are opaque. Since these excitations are not
associated with the conduction band, the material may be opaque and still an insulator.

7. (extra points given for good long answers ) (a) (1 point) Why do incandescent lamps
often burn out just after they are switched on? (b) (1 point) Why do old bulbs show a dark
spot at the top (rather than somewhere on the side)? See Bloomfield, section 6-3.

(a) Suppose a thin spot developed in the filament; that length would have a higher re-
sistance. It would not change the overall resistance of the long filament by much, so the
current would not change much. But the same current flowing through a greater resistance
will lead to greater dissipation, i.e. more heat. The segment would have a higher tempera-
ture, and hence more sublimation, and so grow even thinner. So a thin spot grows thinner
and eventually breaks.

However, the above scenario does not explain why bulbs tend to burn out more when
first turned on. The bulb is going through some dramatic changes when first turned on. For
example, its temperature is changing by thousands of degrees. (According to Bloomfield
(p. 276), they operate at about 2500±K.) One consequence is that the resistivity changes
with temperature—it is 5:44£ 10¡8 m at 300±K, 21:5£ 10¡8 m at 900±K, etc. Hence
the bulb draws a lot more current when initially turned on. As discussed above the local
temperature of the thin spot is higher, and perhaps with the large initial current it gets hot
enough to melt.

In a different scenario, one concentrates on the fact that the wire is not one big perfect
crystal (i.e. the atoms are not arranged in a perfect lattice), instead there are grains in
which the lattices have different orientations with ‘‘domain walls’’ separating them. Each
time the wire is heated up, these grains grow larger. Eventually the grains reach the size
of the diameter of the wire, then the domain wall spans the wire. Another consequence
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of the temperature change is that it will undergo some thermal expansion (the coefficient
for linear expansion of tungsten (W ) at 25±K is 4:5 £ 106 K¡1, CRC Handbook), and in
this picture the domain wall is a crack waiting to happen when the wire is under ‘‘thermal
stress.’’

There are other scenarios.
(b) According to Bloomfield (p. 279), bits of tungsten which have come off of the hot

filament are carried by convection currents. The gas nearest the filament is the hottest and
therefore the lightest; it is carried upward. There it cools and begins to descend. Some of
the tungsten condenses at the top of the bulb. According to this explanation, the dark spot
occurs at the ‘‘top’’ of the bulb, which may be at different parts of bulb depending on how
it is situated. (In some fixtures the bulbs lie sideways or even upsidedown, and the spot
there should occur in a different place on the bulb.)

8. (5 points and possibly extra points) (a) Plot the potential V = x2=(1 + x5=100) for x
between -2 and +10 and find its maximum value inside this interval (endpoints excluded).
(b) Integrate numerically the Schrödinger equation

¡d2y

dx2
+ V y = Ey

for several values of E between 0 and the maximum of V . Start the integration at x = ¡2;
assuming that the total potential is infinite for x < ¡2. Find the approximate ground state.

Plot V (x) = x2=(1 + x5=100)
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By setting the derivative of V (x) to zero to find its maxima and minima:

V 0(x) =
x(2 ¡ 3x5=100)

(1 + x5=100)2
= 0; (12)

which has solutions x = 0 which is a minimum and x = (200=3)1=5 ¼ 2:316 which is a
maximum. The height of the well is V (2:316) ¼ 3:219.

Now, we apply a ‘‘shooting’’ algorithm to find states which have larger amplitudes in
the ‘‘well’’ (the region ¡2 < x < 2:316) than they do outside the well (x > 2:316). Since
the potential V (x) is infinite at x = ¡2 the particle cannot be there at all, and therefore
the probability amplitude y(x) must be equal to zero there. So we insist y(¡2) = 0.
We give the wavefunction an initial slope y0(¡2) = c—I chose y0(¡2) = 0:1 (Because
the differential equation is linear, if y(x) is a solution, so is ay(x). Therefore when we
select an initial slope, we are just choosing one of the solutions from this infinite family
of solutions.) Next we choose an energy E and numerically integrate the equation using
MAPLE. As we vary E the resulting wavefunctions y(x) look very different — most have
a large amplitudes outside the well, but close to select energies the amplitudes in the well
are larger. The latter are the wavefunctions we are searching for.

I started with E = 0:1, looked at y(x), increased the energy by 0:1, looked at y(x),
and so on. As the energy increased, the amplitude outside the well decreased. A change
occurred between E = 1:0 and E = 1:1: the first peak outside the well was positive for
E = 1:0 and was negative for E = 1:1. So I stepped through this region more carefully,
incrementing the energy by 0:01. The wavefunction with the largest amplitude inside the
well was for E = 1:02; to two decimal places.

A trick for estimating energies in wells is to approximate the potential well V (x) near its
minimum x0 by a Taylor expansion to order (x ¡ x0)2. In this particular case, x0 = 0 and
one would have V (x) ¼ x2. With this approximation we have the Schrödinger equation
for the harmonic oscillator that we looked at previously in a problem session. Recall it had
an eigenvalue of E = 1:0 which is close to the value we found above.

Classically, for energies 0 < E < 3:219 a particle is either inside the well or outside the
well. In quantum mechanics we see that the wavefunction has some weight inside the well,
outside the well, and in the classically forbidden region. Outside the well the wavefunction
oscillates almost periodically. Let us compare the value of jy(x)j2 at its maximum inside the
well to one of its maxima outside the well, preferably at as large an x as possible. With the
choices made above the peak inside the well ymax

inside ¼ 0:233 while the peak out near x = 10
was ymax

outside ¼ 0:021. The tunneling probability is proportional to jymax
outsidej2=jymax

insidej2.
George Gamow used a somewhat similar problem to explain the range in lifetimes

associated with ® decay of radioactive nuclei. See Tipler, Modern Physics, p. 231 or
http : ==www:phys:virginia:edu=classes=252=Barriers=Barriers:html.
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Figure 2:
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