
Physics 312 – Assignment 6

1. Explain why a transient current flows when you touch a piece of n-type semicon-
ductor to a piece of p-type semiconductor. What is the direction of current flow? What
stops the current after a while? Similar questions are in Bloomfield, p. 439.

If we bring an n-type semiconductor (for instance, As - doped Ge) into contact with a p-
type semiconductor (for instance, Ga - doped Ge), we have electrons in the conduction band
on the n-type side and holes in the valence band on the p-type side. We can lower the energy
by moving some of the former into the latter. Since the electrons are negatively charged,
the current will be from the p-type side to the n-type side. There is also a concentration
gradient, i.e. more electrons on one side, more holes on the other, which leads to a diffusion
that from a region of high concentration to one of lower concentration. This effect pushes
electrons in the same direction as the energy considerations. In fact, the two effects are
related, because the carrier concentrations depend on the concentration of impurities, such
as As and Ga;and their ‘‘donor’’ and ‘‘acceptor’’ levels (see below). The real quantity
driving the migration of electrons is the ‘‘local chemical potential’’, which depends both on
the ’’impurity levels’’ available and on the carrier concentrations.

Before this electron migration started both sides were electrically neutral, but now neg-
ative charges are building up on the p side and positive on the n side. It costs energy to
separate charge. So when the gain in energy from moving electrons from conduction to
valence bands balances the loss in energy from separating the charges, the current stops.
(The current stops when the chemical potential is the same on both sides.)

This process creates a ‘‘depletion region’’ or ‘‘depletion zone,’’ and it is important in the
operation of diodes.

About n-type and p-type materials

A somewhat naive picture is as follows. Start with silicon or germanium (Ge) atoms
which have four valence electrons. Take the Ge ions (the nuclei plus the bound electrons)
and construct a lattice. Then find the states associated with this structure and fill them up
(obeying the Pauli exclusion principle and starting with the lowest energy). One finds that
the energies of these states fall into ‘‘bands’’ separated by ‘‘gaps.’’ Furthermore, the last
filled state completes a band (the valence band) and the next available state is Eg higher in
energy.

Now let us consider substituting a small percentage of As (or P , or Sb) atoms for some
of the Ge. Since As has five valence electrons, we have some extra electrons which could
go in the higher (conduction) band. This isn’t quite right because the As ions are different
from the Ge ions (they have more charge); however, it is true that the Ge doped with As
has very similar energy levels as pure Ge and that there are additional states, localized near
the As impurities, that are close in energy to the conduction band of pure Ge. These are



called ’’donor’’ states. At ordinary temperatures, thermal energy is sufficient to promote
electrons from the donor states to the conduction band. We end up with extra electrons in
the conduction band (’’carriers’’), although their concentration is not the same as that of the
As impurities, in general. This is called an n-type semiconductor.

If we substituted Ga atoms instead (or another atom with three valence electrons, such
as B; Al, or In), the energy levels would again be quite similar to those in pure Ge, but
this time there would be ‘‘acceptor’’ states associated with the Ga impurities, as well extra
unfilled levels (holes) in the valence band at finite temperature. This is called a p-type
semiconductor.

2. Melissinos, exercise 1.1.
(a) Look up the atomic mass number A, and density ½ of Si and Ge and find the number

of atoms per cm3.
(b) Assuming that the atoms are in a diamond structure (8 atoms/unit cell) find the lattice

spacing.
(c) Find the resistivity of Ge at room temperature if it is doped with 1015 atoms=cm3

of Sb. Assume a mobility of the donor’s electrons of ¹e = 1200 Cm2=V ¢ s.

(a) From the CRC Handbook we find the mass numbers A and densities ½ for Si and
Ge

ASi = 28:09 ½Si = 2:33 g=cm3

AGe = 72:59 ½Ge = 5:32 g=cm3 (1)

Noting that there are NA atoms in a mole where NA is Avogadro’s number, we can calculate
the number density from the mass density and the atomic mass, as follows

Si :

µ
2:33 g

cm3

¶ µ
6:022 £ 1023 atoms

28:09 g

¶
= 5:00 £ 1022 atoms=cm3;

Ge :

µ
5:32 g

cm3

¶ µ
6:022 £ 1023 atoms

72:59 g

¶
= 4:41 £ 1022 atoms=cm3: (2)

(b) Next, from the number density we can calculate the volume of a unit cell which
contains 8 atoms in this instance

Vcell¡Si = 8 atoms

µ
cm3

5:00 £ 1022 atoms

¶
= 1:60 £ 10¡22cm3;

Vcell¡Ge = 8 atoms

µ
cm3

4:41 £ 1022 atoms

¶
= 1:81 £ 10¡22cm3: (3)

Then from the volume of the unit cell we can calculate the lattice spacing

aSi =
¡
1:60 £ 10¡22 cm3

¢1=3
= 5:43 £ 10¡8 cm = 5:43 angstroms;

aGe =
¡
1:81 £ 10¡22 cm3

¢1=3
= 5:66 £ 10¡8 cm = 5:66 angstroms: (4)

(c) First of all we can see by the position of Antimony (Sb) on the periodic table that it is
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a ‘‘donor’’ and that we are talking about an ‘‘n-type’’ (doped) semiconductor. The intrinsic
carrier density ni of Ge calculated at the end of Section 1.1 in Melissinos is 1013= cm3;
it is much less than donor density ND given in the problem as 1015= cm3. Therefore,
the carrier density of negative charges n is essentially equal to ND. The carrier density
of positive charges is approximately n2

i =ND (see Melissinos, p. 11) which is very much
smaller, and so we will neglect any contribution from positive carriers hereafter.

When only one carrier contributes the conductivity ¾ is given by

¾ = qn¹; (5)

where q is the charge, n the carrier density, and ¹ the mobility (see Melissinos, p. 13). Thus

¾ =
¡
1:60 £ 10¡19 C

¢ ¡
1015 =cm3

¢ ¡
1200 cm2=V ¢ s

¢
=

0:192 C

V ¢ s ¢ cm
: (6)

Converting the cm to m and taking the reciprocal gives the resistivity ½ = 5:21£10¡2 ­¢m.

3. Melissinos, exercise 1.3.
Consider germanium doped with 1014=cm3 atoms of arsenic.
(a) Find the conductivity assuming a reasonable value of the mobility of the impurities.
(b) The energy gap of germanium is Eg = 0:67 eV and the density of states at the edge

of the conduction band can be taken as Nc = 1019=cm3. Estimate the intrinsic carrier
density for germanium at room temperature.

(c) Use the result of (b) to find the density of holes in the doped sample.
(Note that part (a) is closely related to part (c) of exercise 1.1.)

(b) I think it’s more sensible to answer part (b) first. The intrinsic carrier density ni is
related to the density of states at the edge of the conduction band NC through

ni = NC exp

µ
¡ Eg

2kT

¶
: (7)

(See Melissinos, p. 8.) So

ni = 1019=cm3 £ exp

µ
¡ 0:67 eV

2(eV=40)

¶
¼ 1:5 £ 1013=cm3: (8)

(a) Arsenic (As) is a donor. The density of donors ND = 1014=cm3 is many times
larger than the intrinsic carrier density, so the carrier density we need in the calculation of
the conductivity (¾ = qn¹) is approximately the donor density (n = ND). Next we must
assume a reasonable value for the mobility of donor electrons in Ge. Let us take as an
order-of-magnitude approximation 103 cm2=V ¢ s. Then

¾ =
¡
1:60 £ 10¡19 C

¢ ¡
1014 =cm3

¢ ¡
103 cm2=V ¢ s

¢
=

0:016 C

V ¢ s ¢ cm
= 1:6=­ ¢ m: (9)

Using a relationship between the hole and electron densities and the intrinsic carrier
density (np = n2

i ) and the approximation n ¼ ND led to eq. (1.12) in Melissinos, which
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yields in this particular case

pn ¼ n2
i

ND
¼ 2:3 £ 1012=cm3: (10)

4. Melissinos exercise 1.4.
Make a plot of the Fermi-Dirac distribution at T = ¡78±C, room temperature, and a

T = 500±C when EF = 1 eV.
(Accurate plots are expected. First plot for 0 < E < 2 eV and then for 0:8 eV < E <

1:2 eV.)

The Fermi-Dirac distribution is given by

f(E) =
1

exp[(E ¡ EF )=kT ] + 1
; (11)

where EF is the Fermi energy. Let us express kT for the various temperatures in eV ’s:
T (in C) kT in eV’s
¡78± C 0:017 eV
17± C 0:025 eV
500± C 0:067 eV

Now let us plot the Fermi distribution for the range 0 < E < 2
1=(exp((E ¡ 1:0)=0:017) + 1)

and then in a smaller region surrounding the Fermi energy (0:8 < E < 1:2)
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This function gives the average number of fermions filling a level with energy E. Be-
cause we are talking about fermions, f(E) varies between zero and one. At T = 0, f(E)
is a step function — equal to one for E < EF and equal to zero for E > EF .
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