
Physics 312 – First Pledged Problem Set

1. The ground state of hydrogen is described by the wavefunction
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where a0 is the Bohr radius.

(a) Compute the charge density

½ (r) = e jÃ (r)j2 :

and plot 4¼r2½ as a function of the dimensionless variable r=a0. Does the plot peak at
r = a0?
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A plot of this function is below.
We see that the plot does peak at r = a0.

(b) Compute the average value of r. Is it equal to a0?

We have
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Figure 1:

where ¯ = r=a0. The remaining integral computed by hand, looked up, or done by com-
puter, and is found to be equal to 3!=24 = 3=8. Thus

hri =
3

2
a0:

We see that hri is not equal to a0.

(c) Does the electron have a definite value of r? Does it have a definite speed? Does it
have a definite angular momentum? Does it have a definite energy? If the answer to any
of these questions is yes, give the value of the quantity.

The Hamiltonian that describes the electron is

H =
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r
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We know from basic quantum mechanics that an eigenfunction of a system described by a
Hamiltonian H will also be an eigenfunction of an operator O if and only if O commutes
with H. One can check that r and v = p=m do not commute with H, while L2 = L2

x +
L2

y +L2
z and H itself do commute with H. Therefore the electron has a definite energy and

angular momentum, but not a definite radius or speed. The value of the angular momentum
is L =

p
l (l + 1)~ = 0 and the value of the energy is E = ¡13:6 eV.

(d) Compute the electric field due to this charge density everywhere in space. (Hint: use
Gauss’s theorem.) Add it to the field of the proton. Plot the total (radial) field as a function
of r=a0 for r > a0=2 to check that it decreases exponentially.

We have from Gauss’s law thatZ
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for any closed surface S. Because the charge density is spherically symmetric, it follows
that the electric field will be radial. Thus if we choose for S a sphere of radius r centered
at the origin, we find that
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where R = r=a0 and R0 = r0=a0. The remaining integral can be done by Maple or the
like, but is also easily done by hand. First we perform a change of variable:
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where ¯ is simply equal to 2R0. Now we perform two integrations by parts:
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The field due to the proton is just the Coulomb field
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so adding this to our previous result we find that the total field is

Etot (r) = ¡ 1

4¼²0

e

a2
0

µ
1 +

a0

r
+

a2
0

2r2

¶
e¡2r=a0 :

A plot of this field is below.

(e) Compute the potential by integrating the field from r to infinity.

Using Maple or the like to do the integration, we find that
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Figure 2:

2. Read the short section on impurity levels on page 368 of Kittel and Kroemer and look
up the dielectric constants of Si and Ge, as well as the effective masses for the valence and
conduction bands. Then:

(a) Compute the ‘‘effective Bohr radius’’ for donor and acceptor ground states. The easy
way to do this is to scale the usual Bohr radius by the appropriate factors.

From Table 13.1 on page 357 of Kittel and Kroemer we obtain the following values:

Element Effective Mass of Holes Effective Mass of Electrons Dielectric Constant
Si 0.58 me 1.06 me 11.7
Ge 0.35 me 0.56 me 15.8

The Bohr radius for hydrogen is given (in MKS units) by

a0;hydrogen =
4¼²0~2

mee2
;

which is equal to 0.0529 nm. As a rough approximation, we can treat the acceptor and donor
atoms as hydrogen-like atoms by replacing me by the effective electron mass (meff) and
²0 by ·²0, where · is the dielectric constant of the material. Thus we have

a0 =
4¼·²0~2

meffe2
=

·

(meff=me)
a0;hydrogen:

Substituting, we find the following values for the effective Bohr radii:

Element a0 for Holes a0 for Electrons
Si 20.2 a0 11.0 a0

Ge 45.1 a0 28.2 a0

(b) Compute the ionization energies and compare with Table 13.2.

The ionization energy of the hydrogen atom is given by

Eion;hydrogen =
mee

4

2 (4¼²0)
2 ~2

;

which is equal to 13.6 eV. Performing the same approximations as before we find that

Eion =
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·2
Eion;hydrogen:
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more accurate than that.

3. Compute the bias voltage of a germanium p-n junction at 77 K, at room temperature,
and at 500 K. Comment on the effect of increased temperature on the performance of such
a junction.

We have from page 17 of Melissinos that
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e
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and we have from page 8 that
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Combining these two relations we have that
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The exact values of NA and ND will depend on the doping, but for representative values
we can use the ones given in Figures 1.8(b) and 1.8(c) on page 15 of Melissinos. These
are NA = 1016 cm¡3 and ND = 1015 cm¡3. On page 9 of Melissinos, we learn that for
germanium ni ¼ 1013 cm¡3 and Eg = 0:7 eV at room temperature (300 K). From there
data we determine that Ns ¼ 8 1018 cm¡3. Plugging these values into the expression for
the bias voltage we find that Vbi = 0:596 V, 0:295 V, and 0:025 V at 77 K, room temperature
(300 K), and 500 K, respectively.

Since the bias voltage decreases with temperature, the performance of the junction be-
comes worse as the temperature decreases.

4. Short questions.

(a) Using just the lattice parameter, compute the Fermi energy for aluminum and compare
with the value given, for instance, in Tipler. (Hint: how many valance electrons per atom
are there in Al?) If there is a discrepancy, it indicates that the effective mass of electrons in
Al is different from the free electron mass.

Aluminum has a face-centered cubic lattice structure, and so it has four atoms per unit
cell. The density and atomic weight (as found in the CRC Handbook of Chemistry and
Physics ) are 2.70 g/cm3and 26.98 g/mol, respectively. We learn from a periodic table that
aluminum has three valence electron per atom. Therefore the volume occupied by one atom
is (26.98 g/mol)(1 mol/6.022 1023 atoms)/(2.70 g/cm3) = 1.66 10¡23 cm3/atom. Since
there are four atoms per unit cell, the volume of the unit cell is four time this, or 6.64 10¡23
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cm3, and the lattice parameter is given by 4.05 10¡8 cm. Since there are three valence
electrons per atom, the number density of valence electrons is simply ne = 3/(1.66 10¡23

cm3) = 18.1 1022 electrons/cm3. From equation 1.4 on page 6 of Melissinos we see that

EF =
~2

2m

¡
3¼2ne

¢2=3
:

Plugging in the appropriate quantities, we find that EF = 7.38 10¡21 J = 0.046 eV.
In Table 39-1 on page 1295 of Tipler (volume 2), the Fermi energy of aluminum is given

as 11.7 eV. Therefore the effective mass of an electron in aluminum must be considerably
different from that of a free electron.

(b) Using the measured resistivities, given by Tipler on page 722, compare the resistance
(or, if you wish, the conductance) of an Al wire to that of a Cu wire having the same length
and cross section.

From page 722 of Tipler we have ½Al = 2:8 £ 10¡8 =m and ½Cu = 1:7 £ 10¡8

=m. On page 721 of Tipler, we learn that

R = ½
L

A
;

so if both wires have the same length and cross section then
RAl

RCu
=

½Al

½Cu

= 1:65

(c) Compare the resistance (or, if you wish, the conductance) of an Al wire to that of a Cu
wire having the same length and weight.

Since the wires have the same weight we have dAlAAlL = dCuACuL, or AAl=ACu =
dCu=dAl, where d represents the density of the material. Therefore,

RAl

RCu
=

½Al

½Cu

ACu

AAl

=
½Al

½Cu

dAl

dCu
:

From Table 11-1 on page 333 of Tipler we see that dAl=dCu = 0:030, so we have finally
that RAl=RCu = 0:50.

(d) You should have found from (b) and (c) that, at least by some criteria, Al is a better
conductor than Cu. It is also much cheaper. Why then is Cu used for most electrical wiring?
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One reason copper is used rather than aluminum is that aluminum oxide does not con-
duct electricity, while copper oxide does. Like most metals, aluminum and copper quickly
develop a thin layer of metal oxide when exposed to air. This means that if you strip two
ends of an aluminum wire and twist them together, current will not want to flow across
the splice. If the same procedure is repeated with copper, however, one finds that current
readily flows across the splice. Thus, despite the fact that aluminum is cheaper, in most
applications it is more convenient to use copper instead.

Another reason is that aluminum tends to expand more when heated, which significantly
reduces the lifetime of splices.

(e) Why is the filament of an incandescent light bulb made of tungsten, rather than steel or
copper?

From pages B-14, B-40, and E-88 of the CRC Handbook of Chemistry and Physics, 66th
Edition, we learn that the melting points of copper, tungsten, and steel are 1083 ±C, 3410
±C, and 1500 ±C, respectively. We also learn from page 278 of Bloomfield that tungsten
sublimes very slowly at temperatures below its melting point. Thus tungsten filaments can
be run much hotter than filaments made of copper and steel before the filament melts or the
rate of sublimation becomes intolerable. Because it can be run hotter, the tungsten filament
also produces a richer, whiter light that is more similar to the light of the sun. For this
reason, tungsten filaments are used in incandescent light bulbs instead of copper or steel.

(f) Why has silicon become the standard semiconductor material for most purposes? What
are possible alternative materials?

One reason for the prevalence of silicon in semiconductor devices is that silicon is a
readily available material. Sand (i.e. quartz) is simply silicon dioxide. Another reason is
that when people first started to work with semiconductors they chose to work with silicon,
and over the years manufacturers have developed tricks to make semiconductor components
smaller, faster, etc. that are specific to silicon. It would cost a great deal of money to modify
these techniques for use with other elements, so manufacturers continue to work with the
traditional silicon.

Alternative materials that are used include germanium and gallium arsenide.

(g) Why is silicon not suitable for a light emitting diode? What materials are used for this
purpose?

A material such as gallium arsenide is much more suitable than silicon for LEDs because
GaAs is direct gap semiconductor, while Si is an indirect gap semiconductor. In both
materials the states near the top of the valence band have zero momentum, but in GaAs the
states at the bottom of the conduction band also have zero momentum, while in Si they have
nonzero momentum. This is because the wavefunction changes sign in going from one Si
atom to the next on the edge of the cubic cell. (See the picture of the energy bands of Si on
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page 308 of the Physicist’s Desk Reference.) This means that the momentum of an electron
in GaAs changes very little when it emits or absorbs a photon, and thus light emission can
occur directly in this material. In Si, however, photon emission is an indirect process that
cannot occur unless the conduction band electron has a secondary process by which it can
dispose of its momentum. (The terms direct gap and indirect gap refer to whether or not
the bottom of the conduction band lines up directly above the top of the valence band in a
plot versus momentum.)

Gallium arsenide has a bandgap of 1:4 eV, which corresponds to a red photon. Thus
GaAs is used to make red LEDs. A wider bandgap, resulting in the emission of yellow
or green light, is obtained by replacing some of the gallium atoms with aluminum, or by
replacing some of the arsenic atoms with phosphorus.

(h) In a p-n junction at zero external bias, what is the sign of the net electrical charge on
the p side? On the n side?

The net electric charge is negative on the p side and positive on the n side. This is
because when the two pieces of semiconductor first make contact, there is a higher concen-
tration of positive carriers on one side of the junction and a higher concentration of negative
carriers on the other. Thus there is a diffusive current and positive carriers flow from the p
side to the n side and negative carriers flow from the n side to the p side. Once the electrons
cross into the p side of the junction they annihilate with a hole and similarly for the holes
that cross into the n side. The new charge distribution produces an electric via Gauss’s
law, and the direction of the electric field is such that it opposes the diffusion current. The
current continues to flow until the system reaches equilibrium, where the current due to
diffusion is exactly the opposite of that due to the electric field.
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