
Physics 312 – Assignment 8

1. Fundamental constants from LED data. In class, we measured the threshold voltage
to get appreciable light from various LED’s (red, yellow, green, blue). Use these data to
obtain a rough estimate of h=e, assuming that all the energy eV gained by an electron
passing through the LED is transferred to a single photon. Plot (by hand) the data to check
this simple assumption.

The data obtained in class follows

Wavelength (in 10¡9m) Frequency (in 1014= sec ) Voltage (in volts)
660 4:54 1:35
630 4:76 1:46
590 5:08 1:58
565 5:31 1:66
450 6:66 2:28

There is a threshold voltage Vth, a voltage we have to apply to put electrons into the
conduction band. Once electrons are in the conduction band, they can drop into the valence
band. When they do this they give off a photon, the energy of which is Eg , the gap energy.
So we have

hf = Eg = eVth + E;
where E is the difference between the gap energy and the threshold energy. It happens that
E is approximately the same for the various LED’s used. Thus we can plot V (in volts)
versus f (in 1014= sec) , the slope is h=e.

The following MAPLE code provides a least-square fit to the data above.

> with(stats);

[anova; describe; fit; importdata; random; statevalf; statplots; transform]

> Xvalues := [4:54; 4:76;5:08;5:31; 6:66];

Xvalues := [4:54; 4:76; 5:08; 5:31; 6:66]

> Yvalues := [1:35; 1:46;1:58;1:66; 2:28];

Y values := [1:35; 1:46; 1:58; 1:66; 2:28]

> eq¯t := ¯t[leastsquare[[x;y];y = a + b ¤ x; fa;bg]] ([Xvalues;Yvalues]);

eqfit := y = ¡:6498871585 + 1:317341956 x
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Figure 1:

Reading off the slope from above and recalling that the x axis units are 1014= sec, we
find h=e ¼ 0:436 £ 10¡14 V¢ sec, which is about 5 percent off the actual value of h=e ¼
0:414 £ 10¡14 V¢ sec.

The fit can also be done with a spreadsheet (the next version of MAPLE comes with a
built-in spreadsheet).

2. Circuit parameters. A general circuit is characterized by the three quantities R, C, L.
(a) What are the dimensions of these quantities in the SI? Optional: what are their

dimensions in the gaussian system (they are a lot simpler and more intuitive, but in this
course we have agreed to use SI).

(b) What are the dimensions of the product LC? What is its physical meaning?
(c) What are the dimensions of the product RC? What is its physical meaning?
(d) What are the dimensions of R=L? What is its physical meaning?
(e) Form a dimensionless combination of R, C, L. What is its physical meaning?

(a) From V = Ri, V = q=C and V = Ldi=dt, where q is charge and i is current, we
can extract the following dimensions

dim[R] :
volt

amp
=

J ¢ s

C2
= ohm;

dim[C] :
coul

volt
=

C2

J
= farad;

dim[R] :
V olt

Amp=sec
=

J ¢ s2

C2
= henry:

(b) The dimension of LC is s2. See below for its physical meaning.
(c) The dimension of RC is s.
(d) The dimension of R=L is s¡1.
(e) A dimensionless combination is R2C=L.

If we have a capacitor, a resistor and an inductor in series connected to an ac source, we
can model it by the following equation

2



L
d2q

dt2
+ R

dq

dt
+

q

C
= Emax e¡i!t;

where ! is the angular frequency of the ac voltage and where we have used I = dq=dt and
dI=dt = d2q=dt2. (The ac source is actually the real part of Emax e¡i!t, so we should
take the real part of q(t) in the end.) We don’t need the ac source for this problem but it
occurs in the next problem, so we include it. This differential equation is mathematically
equivalent to a driven, damped harmonic oscillator, which has the following equation

m
d2x

dt2
+ b

dx

dt
+ kx = Fmax cos(!t):

The solution to the LRC differential equation is

q(t) =
Emax e¡i!t

L
¡

1
LC ¡ !2

¢
¡ iR!

+ A+ e¡a+t + A¡ e¡a¡t;

where

a§ =

R
L §

q
R2

L2 ¡ 4
LC

2
;

and the constants A§ are to be determined from initial conditions.
The first term is called the ‘‘steady state’’ (it oscillates with the driving frequency !),

and the latter two terms are called ‘‘transients" (which decay exponentially). The constants
a§ determine how long the part of the solution involving initial conditions lasts. They are
also combinations of the time scales we identified above.

(b0) In the R ! 0 limit (which essentially means removing the resistor from the circuit),
a§ = §i=

p
LC. In that case, the latter two terms are oscillatory with the angular frequency

1=
p

LC which is the ‘‘natural frequency" of the LC circuit.
(c0) In the L ! 0 limit (removing the inductor), a¡ ! 1=RC, so RC is the decay time

of an RC circuit.
(d0) In the C ! 1 limit (removing the capacitor), a+ ! R=L, thus L=R is the decay

time associated with an RL circuit.
(e0) We can see from the expression above that a§ may be real or complex depending

on the sign of discriminant
³

R2

L2 ¡ 4
LC

´
. If it is positive, we say the oscillator is ‘‘over-

damped,’’ and the transients simply decay. If it is negative, we say the oscillator is ‘‘under-
damped,’’ and there are some oscillations superimposed on the decay of the transients. If it
is zero, we say the oscillator is ‘‘critically damped.’’ When the dimensionless combination
R2C=L equals 4, the LRC circuit is critically damped. (Note the solution above is not
quite right for the critically damped case; it was assumed that a+ 6= a¡ in deriving it.)

Another interpretation of the dimensionless combination found above concerns the qual-
ity factor Q of an oscillator. If R is small, a§ ¼ ¡R=2L § i=

p
LC, meaning that there is

a weak decay superimposed on an oscillation. In the undriven case, a little bit of energy is
lost with each period T = 2¼

p
LC. For a damped harmonic oscillator, the quality factor

is defined as

Q =
2¼E

¢Eperiod
;

that is 2¼ times the ratio of the energy at the beginning of a cycle to the energy lost in
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that cycle. If only a little energy is lost, the Q factor will be large. Consider when the
harmonic oscillator is at its maximum amplitude and all of its energy is potential energy.
Then the energy is 1

2kA2(t) where A(t) is the amplitude at time t. The energy a period
later is 1

2kA2(t + T ). Then

Q = 2¼
1
2kA2(t)

1
2k [A2(t) ¡ A2(t + T )]

:

We know that when R is small

A(t + T ) ¼ A(t) e¡RT=2L

because the real part of a§ is ¡R=2L. So

A2(t) ¡ A2(t + T ) ¼ RT

L
A2(t);

and

Q = 2¼
L

RT
=

L!0

R
=

p
L

R
p

C
:

Therefore, the dimensionless quantity we found above is related to the quality factor of the
oscillator:

R2C

L
=

1

Q2

3. Passive low pass filter. As I mentioned in class, one stage of an archaic AM receiver
consists of a low pass filter which removes the RF (radio frequency) carrier wave, leaving
the AF (audio frequency) signal. The simplest passive filter (i.e., a filter which does not
involve active elements such as transistors), consists of a resistor and a capacitor.

(a) Sketch this filter.
(b) Show that ¯̄

¯̄Vout

Vin

¯̄
¯̄
2

=
1

1 + (!RC)2
:

Plot this transfer function and show that it has the right properties to function as a low
pass filter.

(c) Choose appropriate values of R and C for an AM receiver.
(d) Our simple filter has a very slow ‘‘roll-off ’’; ideally, one would like a ‘‘brick wall’’

transfer function which is 1 up to some frequency !0 and zero otherwise. Some improve-
ment is obtained by incorporating an inductor into the filter, as discussed in class. Sketch
this filter.

(e) Find the transfer function for this filter. Show that the response at low frequencies
is the flattest when R =

p
2L=C. This can be done graphically by plotting the transfer

function as a function of a dimensionless frequency for several values of a dimensionless
parameter that is proportional to L. Note that for L = 0, we are back to the previous case.

(f) How does the transfer function behave at high frequencies?
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(a) Below is a sketch of a simple low pass filter.

C

R

Vin Vout

L

(b) In Problem 2, we wrote down the solution for the charge on the capacitor in an LRC
circuit. To get Vout, the voltage across the capacitor, we simply divide by C.

Vout =
Emaxe¡i!t

LC
¡

1
LC

¡ !2
¢ ¡ iRC!

;

where we have dropped the transient part. The transfer function is
¯̄
¯̄Vout

Vin

¯̄
¯̄
2

if we use the complex notation for the V ’s. This is the same as

h(Re Vout)
2iT

h(ReVin)2iT

;

where hiT refers to the average over a period of the ac source. If we used the real repre-
sentation of V; we would have to use the latter expression.

The transfer function for the LRC circuit is then¯̄
¯̄Vout

Vin

¯̄
¯̄
2

=
1h

(1 ¡ LC!2)2 + R2C2!2
i :

In the case where there is no inductor (L = 0), it becomes
¯̄
¯̄Vout

Vin

¯̄
¯̄
2

=
1

[1 + R2C2!2]
:

A plot of it looks like
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Figure 2:

where the x axis is measured in units of 1=RC, i.e. w = !RC:

(c) For an AM radio, the desired signal should have frequencies between 30 Hz and
20; 000 Hz which correspond to frequencies we can hear (Bloomfield, p. 347), and the car-
rier frequency is between 550 kHz and 1600 kHz, which are the AM radio frequencies
(Bloomfield, p. 496). Thus we want our transfer function to be close to one for audible
frequencies but to fall to zero for the AM radio frequencies. So if we choose

RC =
1

20; 000 Hz
;

then the transfer function is 0: 9753 at the highest audible frequency and 0:0496 at the
lowest AM radio frequency.
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(d) and (e) A plot of the circuit with the inductor follows

C

R

Vin Vout

L

And as already calculated above the transfer function is
¯̄
¯̄Vout

Vin

¯̄
¯̄
2

=
1h

(1 ¡ LC!2)2 + R2C2!2
i :

Let us use again the scaled frequency w = RC! then
¯̄
¯̄Vout

Vin

¯̄
¯̄
2

=
1h¡

1 ¡ L
R2C w2

¢2
+ w2

i :

Note the presence of the dimensionless quantity L=R2C which we identified in Problem 2
with 1=Q2; where Q is the quality factor of theLRC circuit. Then

¯̄
¯̄Vout

Vin

¯̄
¯̄
2

=
1h

(1 ¡ w2=Q2)2 + w2
i :

The desire in a low pass filter is to have the transfer function as flat as possible for the
small frequencies and to fall off as rapidly as possible for the undesired high frequencies.
Adding the inductor can improve our low pass filter on both scores.

Because the transfer function is even its first derivative is zero at w = 0, but we can
choose Q to make the second derivative at w = 0 zero as well.

@2

@w2

¯̄
¯̄Vout

Vin

¯̄
¯̄
2
¯̄
¯̄
¯
w=0

= ¡2 +
4

Q2
:

So choosing 1=Q2 = L=R2C = 1=2 makes the transfer function flat at small frequencies.
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Let’s look at it graphically as well. At Q = 2; 1=Q2 = 0:25, the LRC transfer function
looks like At 1=Q2 = 0:5 At 1=Q2 = 0:75
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Figure 3:

(f) At large frequencies, the denominator is dominated by the !4 term, so that the trans-
fer function varies like !¡4 for large !.

4. Using CMOS technology (with enhancement MOSFETs), as in Bloomfield, page 481,
draw the circuit for an OR gate. Make four replicas of your drawing and indicate explicitly
the voltage (or charge) on all the gates and nodes (you may just color the ones that are
positive) for the four different possible inputs. Verify that the output is in agreement with
the truth table for OR.

The basic building blocks are the p-channel and n-channel MOSFETs in the enhance-
ment mode which are shown below
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Figure 4:

p-channel MOSFET

n-channel MOSFET

- on (i.e. low resistance and small 
voltage drop) if the gate voltage is 
negative (low) 
- off (i.e. high resistance and large 
voltage drop) if the gate voltage is 
positive (high)

- on (i.e. low resistance and small 
voltage drop) if the gate voltage is 
positive (high) 
- off (i.e. high resistance and large 
voltage drop) if the gate voltage is 
negative (low)

An OR gate can be constructed from four MOSFETs, two n-channel and two p-channel
MOSFETs in the following way
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Figure 5:

Output 

0 V

+3 V

Input 1

Input 2

In fact, it is simply the NAND gate as drawn in Bloomfield with the p-channel and n-
channel MOSFETs switched. Each input is connected to one p-channel and one n-channel
MOSFET; therefore, for all the various possible inputs there will always be two MOSFETs
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‘‘on’’ and two ‘‘off.’’ We verify that the above circuit represents an OR gate by drawing
below the four possible inputs and the resulting outputs.
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We draw to the side a resistive network that corresponds to the state drawn, R is a large
resistance corresponding to the off state and r is a small resistance corresponding to the on
state. We see that these agree with the truth table of the OR which is

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

;where 1 corresponds to high voltage and 0 to low voltage.

An alternative approach in which one sends the output of a NOR gate into a NOT gate
is shown below

Output 

0 V

+3 V

Input 1

Input 2

0 V

+3 V
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