
Physics 312 – Assignment 9

1. Fourier integrals. (8 points) Suppose that an EM pulse is described by the Gaussian
function

f(t) =
1p

2¼¾2
e¡t2=2¾2

:

(a) Calculate the Fourier transform F (!) of the function f(t). If you use MAPLE,
remember to say assume(sigma>0).

(b) Define the moments of f(t) and F (!) as

htni =

R 1
¡1 tnf(t)dtR 1
¡1 f(t)dt

; h!ni =

R 1
¡1 !nF (!)d!R 1

¡1 F (!)d!
;

Calculate ¢t =
p

ht2i ¡ hti2 and ¢! =
p

h!2i ¡ h!i2, and the product ¢t ¢!.
What happens to the bandwidth when you make the pulse sharper? Why?

(a) The Fourier transform F (!) of f(t) is defined as

F (!) =

Z 1

¡1
f(t) e¡i!tdt;

and the inverse Fourier transform of F (!) is

f(t) =
1

2¼

Z 1

¡1
F (!) ei!td!:

(There are other definitions of the Fourier transform pairs that might switch the ei!t and
e¡i!t or might share the factor of (2¼)¡1 differently.) The Fourier transform of the Gaussian
function is

F (!) =
1p

2¼¾2

Z 1

¡1
exp

½
¡ t2

2¾2
¡ i!t

¾
dt;

which we can rewrite as

F (!) =
1p

2¼¾2

Z 1

¡1
exp

½
¡ 1

2¾2

¡
t + i¾2!

¢2 ¡ ¾2!2

2

¾
dt:

Letting s = t + i¾2! we obtain

F (!) =
1p

2¼¾2
exp

½
¡¾2!2

2

¾Z 1

¡1
exp

½
¡ s2

2¾2

¾
ds:

Let us derive some results for Gaussian integrals, if

I(¸) =

Z 1

¡1
e¡¸x2

dx;



where ¸ is positive; then

I2(¸) =

Z 1

¡1

Z 1

¡1
e¡¸(x2+y2) dx dy:

Expressing this integral in polar coordinates gives

I2(¸) =

Z 1

0

Z 2¼

0

e¡¸r2

r dr dµ:

The µ integration is trivial and gives a factor of 2¼. Let us change variables to do the
remaining integral: u = r2 (rdr = du=2)

I2(¸) = 2¼

Z 1

0

e¡¸u du

2
;

which leads to

I2(¸) =
¼

¸
or I(¸) =

r
¼

¸
:

Furthermore, let us define the ‘‘unnormalized moments’’

I(¸; n) =

Z 1

¡1
xn e¡¸x2

dx:

We can see that I(¸; n) = 0 if n is odd, since the function being integrated over is odd.
Next we can find a recursion relation

I(¸; 2n + 2) = ¡ @

@¸
I(¸; 2n);

provided n ¸ 0. Thus

I(¸; 0) =
p

¼¸¡1=2

I(¸; 2) =
1

2

p
¼¸¡3=2

I(¸; 0) =
3

4

p
¼¸¡5=2

etc:

Returning to the F (!) and using the result I(¸) =
p

¼
¸ with ¸ = 1=2¾2, we have

F (!) = exp

½
¡¾2!2

2

¾
:

(b) First of all let us state the trivial result when n is odd (i.e. n = (2m ¡ 1) for integer
m)

ht2m¡1i = h!2m¡1i = 0:
We can use the results of the Gaussian integrals above to conclude that for even n = 2m

ht2mi =
(¡1)m @m

@¸m

p
¼
¸p

¼
¸

¯̄
¯̄
¯
¸=1=2¾2

;
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and similarly

h!2mi =
(¡1)m @m

@¸m

p
¼
¸p

¼
¸

¯̄
¯̄
¯
¸=¾2=2

:

This leads to

ht2i = ¾2

ht4i = 3¾4

h!2i = ¾¡2

h!4i = 3¾¡4

etc:

¢t is the root mean square deviation of the pulse, it measures the ‘‘spread’’ of the pulse.
From the calculations above we conclude that ¢t = ¾ and ¢! = ¾¡1, and ¢t ¢! = 1.
If we make the pulse sharper (i.e. make ¾ smaller) the bandwidth ¢! becomes larger.
Sharp features in time require a lot of frequencies in the Fourier representation. It is like
the uncertainty principle, a more precise knowledge of one of the variables implies a less
precise knowledge of the ‘‘complementary’’ variable.

In summary: The Fourier transform of a gaussian is a gaussian with the reciprocal
width.

2. TV bandwidth. (4 points) In Melissinos, p. 90, it is stated that the bandwidth required
to transmit a television signal is 6 MHz. Why? Try to understand this number by making
an order of magnitude estimate. A television screen has 525 horizontal lines; 30 images
are produced per second.

According to Bloomfield, p. 501, a typical television screen is broken into an array of
dots, numbering 700 £ 525. If each ‘‘pixel’’ receives a signal, and we want each to receive
a signal every 1=30 of a second, the sampling frequency fs is

fs = 700 £ 525 £ 30 Hz = 1:1 £ 107 Hz:

According to Melissinos, eq. (3.20), the sampling frequency and bandwidth are related
through

fs = 2W;
a result originally due to Nyquist known as the sampling theorem. So W = 5:5 MHz.

On pp. 505-506 Bloomfield discusses some tricks used to squeeze information about
color, sound and so forth into the 6 MHz allotted.

3. Phased antenna arrays and diffraction. (10 points) Obtain the radiation pattern shown
in a ‘‘polar plot’’ by Melissinos in Fig. 4.4(b) and the corresponding ‘‘straight’’ plot of
the time-averaged dP=d versus angle µ, as shown in the appropriate frame of the movie
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scatdiff.mov.
(a) You will need to generalize the equations for E1 and E2 at the top of page 124.

Working with complex fields (to make life easier), show that for propagation at an angle µ
to the y axis of the figure, when r tends to infinity

E1 = E0 exp

·
i

µ
kr ¡ k¸

8
cos µ ¡ !t ¡ Á1

¶¸

Obtain the analogous equation for E2. (Actually, E1 and E2 fall off like 1=r, but this factor
is cancelled when computing dP=d.) Hence find E:

(b) The time-averaged dP=d is proportional to the time-averaged jEj2; the other fac-
tors do not interest us, as indicated by Melissinos. Obtain a polar plot of hjEj2i as found
by Melissinos, as well as a ‘‘straight’’ plot as shown on the appropriate frame of the movie
(which frame?). Accurate plots are expected.

2 1

r2 r1

θ

d

Figure 1:
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The field due to the first oscillating dipole is

E1 ¼ E1(r1) exp [i (kr1 ¡ !t ¡ Á1)] ;

where r1 is the distance from dipole 1 to the field point and Á1 the phase of the dipole 1’s
oscillation at time t = 0.

Similarly, the field due to the second dipole is

E2 ¼ E2(r2) exp [i (kr2 ¡ !t ¡ Á2)] :

If we are far from the dipoles, the magnitudes are essentially equal E1(r1) ¼ E2(r2), so we
ignore this difference. The distances r1;2 can be related to r and d, where r is the distance
from the field point to a point midway between the dipoles and where d is the distance
between the dipoles. One gets

r1;2 ¼ r ¨ d

2
cos µ:

In this specific instance we are interested in the case d = ¸=4 where ¸ is the wavelength
of the radiation in question. Note that ¸ = 2¼k, hence, putting this altogether yields

E1;2 = E0(r) exp
h
i
³
k ¨ ¼

4
cos µ ¡ !t ¡ Á1;2

´i
:

Next we want to add these two results to obtain the superposition of the two fields. In-
stead of working with the phases Á1 and Á2, it is more convenient to sum and the difference

© = Á1 + Á2 ±Á = Á1 ¡ Á2

so that

Á1 =
©

2
+

±Á

2
and

Á2 =
©

2
¡ ±Á

2
:

Collecting common factors

E1(r) + E2(r) = E0(r) exp fi(kr ¡ !t ¡ ©=2)g £·
exp

½
¡i

·
¼

4
cos µ +

±Á

2

¸¾
+ exp

½
i

·
¼

4
cos µ +

±Á

2

¸¾¸

In this particular case ±Á = Á1 ¡ Á2 = ¡¼=2 and jEj2 is proportional to

cos2[
¼

4
(cos µ ¡ 1)]

which is plotted below in a polar plot
and in a straight plot

This is the scattering pattern in the frame Nx = 2; Ny = 1; ¢x = 0:25 of scatdiff.mov

4.(4 points) In a plane electromagnetic wave, what fraction of the energy is electric and
what fraction is magnetic? A precise answer is expected, and should be derived using the
simple plane wave described by Melissinos in eqs. (4.9) and (4.90), but the answer is true
more generally.
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Figure 2: Polar plot

On pp. 118-119 Melissinos derives the wave equation from the Maxwell equations

r2E ¡ ¹0²0
@2E

@t2
= 0

and notes that ¹0²0 = 1=c2 where c is the speed of light. He then considers a solution of
the form

Ex = E0 cos(!t ¡ kz);
where ! is the angular frequency, k the wave number and !=k = c. From the Maxwell
equations he obtains the corresponding magnetic field

By =
E0

c
cos(!t ¡ kz):

Next note that the (instantaneous) electric field energy density is

uE =
²0
2

E2;

while the magnetic field energy density is

uB =
1

2¹0

B2:

where E2 = E2
x+E2

y +E2
z : For the solution Melissinos considers, the fraction of magnetic

field energy density to electric field energy density is

uE

uB
=

B2
y

¹0²0E
2
x

=
1

c2¹0²0
= 1:

Therefore, the ratio of magnetic field energy to electric field energy is one; or in other
words, the energy density is half electric and half magnetic.

5. Applied diffraction. (10 points) One important physical limitation on the resolving
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Figure 3: ‘‘Straight’’ plot vs µ

power of an antenna is diffraction. Under ideal conditions:
(a) From how high can an eagle see a mouse on the ground?
(b) A diffraction-limited laser beam of diameter 1 cm is pointed at the moon. What is

the diameter illuminated on the moon? Ignore atmospheric effects.
(c) The world’s largest single-dish radiotelescope is at Arecibo, Puerto Rico. It has a

diameter of 305 m. What is the resolving power (the angular resolution, in degrees), when
the telescope is operating at the famous 1420 MHz frequency of neutral hydrogen?

(d) What is the angular resolution of an array of 3000 km, at the same frequency of
1420 MHz?

As light passes through a slit or aperture, it diffracts. That is, the light spreads out rather
than traveling in a straight line (a ray or beam). Often this phenomenon goes unnoticed
because the amount of spreading or bending depends on the wavelength, and the wavelength
of visible light is rather small. According to Huygens’ principle each point of the slit can
be thought of as a point source of light. The light from these sources interferes giving rise
to diffraction patterns. Diffraction limits our ability to resolve images. If we are viewing
two different sources of light through an aperture, their diffraction patterns may overlap.
Rayleigh introduced a criterion saying that if the central maximum of the first source’s
diffraction coincides with the first minimum of the second source’s diffraction pattern, the
images are ‘‘just resolved.’’ For a circular aperture this criterion leads to the condition

µmin = 1:22
¸

D
;

where µ is the angle between the two lines that connect the sources to the center of the
aperture, ¸ is the wavelength of light, and D is the diameter of the aperture.

(a) Let us consider the front of the mouse and the back of the mouse to be our sources
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and assume that a mouse has a length `. (Let’s assume a mouse is 5 cm long.) We get
an angle by dividing the R distance of the mouse to the eagle’s eye µ = `=R. We need a
wavelength ¸ to use the formula above, we will choose 500 nm which is in the middle of
the visible range. And we also need an aperture diameter. Let’s assume an eagle’s pupil is
0:2 cm in diameter. Then we have

µ =
`

R
= 1:22

¸

D
or

5 £ 10¡2 m

R
= 1:22

5 £ 10¡7 m

2 £ 10¡3 m
;

which yields R ¼ 160 m (about a tenth of a mile).

(b) The moon problem is the mouse problem in reverse, the light is coming out of
the aperture instead of going into it. Plus we know R the distance to the moon (R =
3:84 £ 108 m) and are looking for `. We get

`

3:84 £ 108 m
=

`

R
= 1:22

¸

D
= 1:22

6:32 £ 10¡7 m

1 £ 10¡2 m
;

where we have used D = 1 cm and ¸ = 632 nm (the wavelength of a Helium Neon laser).
We find ` ¼ 3 £ 104 m.

(c) Here we want µmin, with D = 305 m and ¸ = c=f = 21 cm. So µmin = 8:4 £
10¡4 radians or 4:8 £ 10¡2 degrees, or about 3 minutes of arc:

(d) µmin = 8:5 £ 10¡8 radians or 4:9 £ 10¡6 degrees, or 0:018 seconds of arc.

The 21 cm line. This wavelength is rather long, much longer than wavelengths seen
in the Balmer series for instance. Consequently, we are talking about a very small energy
difference ¢E = hc=¸. This small energy comes from the hyperfine splitting. Both the
electron and the proton have spin, and associated with this spin is a magnetic dipole mo-
ment. There is a small energy corresponding to one of the magnetic dipoles being in the
field caused by the other dipole which causes a slight splitting between the energies of the
spin up and the spin down electron. The energy difference is ¢E = 5:87£10¡6 eV which
incidentally corresponds to a kBT with a temperature T = 0:07±K .
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