
Intrinsic carrier concentration in semiconductors

Melissinos, eq.(1.4), gives the formula, valid at thermal equilibrium,

ni = Ns exp

µ
¡ Eg

2kBT

¶
(1)

where,

- ni is the intrinsic carrier concentration, i.e., the number of electrons in the conduction band
(and also the number of holes in the valence band) per unit volume in a semiconductor
that is completely free of impurities and defects

- Ns is the number per unit volume of effectively available states; its precise value depends
on the material, but it is of order 1019 cm¡3 at room temperature and increases with
temperature

- Eg is the energy gap (between the bottom of the conduction band and the top of the valence
band)

- kB is Boltzmann's constant, kB = 1:381 ¢ 10¡23 Joules/Kelvin

- T is the absolute temperature in Kelvin; it is assumed that kBT . Eg=5:

The physical basis of eq. (1) can be understood as follows:

conduction band
The probability of exciting an electron from the top of the

" valence band to the bottom of the conduction band is

Eg proportional to the Boltzmann factor exp

µ
¡ Eg

kBT

¶
:

# This process leaves behind a hole in the valence band and
is called electron-hole pair creation. The total pair creation

valence band rate (see below) is also proportional to this factor.

At thermal equilibrium, the creation of electron-hole pairs is balanced by their recombina-
tion. If n is the concentration of conduction-band electrons and p the concentration of valence-
band holes, the electron-hole recombination rate is proportional to the product np, according
to the general law of mass action of chemical physics. Equating creation to recombination, we
conclude that

np = K exp

µ
¡ Eg

kBT

¶
(2)

where K is a proportionality factor. In an intrinsic semiconductor, by definition, n = p = ni:
Then eq. (2) is equivalent to eq. (1) with K = N2

s .
To compute Ns; we must compute the total pair creation rate. We recognize that an electron

can make a transition from any state in the valence band to any state in the conduction band
and we integrate over all these possible transitions, with a weighting factor to account for the
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fact that the most likely transitions are from states near the top of the valence band to states
near the bottom of the conduction band. When this is done one finds, to a good approximation,

Ns = 2

µ
m¤kBT

2¼~2

¶3=2

=

µ
m¤

m

¶3=2 µ
T

300 K

¶3=2 2:5 ¢ 1019

cm3
(3)

where m¤ is an effective mass that is of the order of the electron mass m (for Si, m¤=m = 0:543).
Ns increases with temperature because higher states in the conduction band, and deeper

states in the valence band, become more accessible as the thermal energy increases. However,
around room temperature it is not bad to regard Ns as a constant, because the dominant T
dependence in eq. (1) comes from the exponential factor. To be accurate, one should also keep
the dependence of Eg on T , which is usually weak.

We see from eq. (3) that Ns depends only on fundamental constants and on T , apart from
the fact that the free electron mass m should be replaced by m¤: If we ask which combination

of m¤; kBT; and ~ has the dimensions of an inverse length, we find that it is (m¤kBT )1=2 ~¡1.
Since Ns has dimensions of inverse length cubed, we get eq. (3) from dimensional analysis
alone, up to a factor of order 1.

We can also give an intuitive argument to understand Ns: Consider an electron moving at
temperature T in one dimension. Its momentum fluctuates, but on the average its energy is
1
2
kBT: The uncertainty in momentum is then ¢p = (m¤kBT )1=2. From Heisenberg's principle,

the minimum uncertainty in position is such that ¢p¢x = ¼~. In effect, every electron state
occupies an interval of width ¢x. The number of states available to an electron of a given spin,
per unit length, is

1

¢x
=

¢p

¼~ =
(m¤kBT )1=2

¼~ (4)

For motion in three dimensions, we must similarly consider that each electron state occupies
the volume (¢x)3 for a given spin. Taking the cube of eq. (4), and doubling it to account for
spin up and spin down, we get the number of effectively available states to a free electron at

temperature T as 2
¡
m¤kBT=¼2~2

¢3=2
; very close to the correct Ns of eq. (3).

The rigorous calculation of ni

The probability of finding an electron in a state of energy E; at temperature T; is given by
the Fermi function

f =
1

exp

µ
E ¡ EF

kBT

¶
+ 1

(5)

where EF is the Fermi energy. For large enough samples, the number of available quantum
states in a given energy interval is proportional to the volume of the sample. We denote by
(dn=dE)dE the number of available states per unit volume with energy between E and E+dE;
and we call dn=dE the density of states. Then the number per unit volume of electrons in the
conduction band is

n =

Z 1

Ec

f
dn

dE
dE (6)

where Ec is the energy of the bottom of the conduction band.
The density of states in a solid is similar to that of free particles near the bottom of a band,

but decreases back to zero at the top of a band. Here is a sketch of density of states dn=dE vs.
energy E (in eV) for a typical semiconductor, showing a valence band (dashed) between 0 and
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4, a band gap between 4 and 5, and part of a conduction band (dotted) above 5. At T = 0 the
valence band is full and the conduction band is empty.
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For an intrinsic semiconductor the Fermi level is near the middle of the energy gap. For
simplicity, we assume at first that the density of states near the top of the valence band is the
mirror image of the density of states near the bottom of the conduction band; then the Fermi
level is exactly in the middle of the energy gap.

On the next graph we show an enlargement of the density of states near the gap, along
with the Fermi level at EF = 4:5 eV (dash-dot line), and the Fermi function f (solid line), for
kBT = 0:1 eV: (This corresponds to the temperature of 1160 K, too high for practical devices,
but good for a clear drawing.) The vertical scale applies to f only.
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The next graph shows the density of states near the bottom of the conduction band (dotted),
along with f (thin solid line). These are the factors in the integrand of eq. (6). Also shown is
the product of these two factors, which is the density of occupied states (thick line).
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To find out how many electrons are thermally excited to the conduction band, i.e. to
compute n in eq. (3), we need to compute the area under the thick line in the graph. This can
be done to a good approximation as follows.

The edge of the conduction band, Ec; is far above the Fermi energy, compared to kBT (in
the graph, Ec = 5 eV and Ec ¡ EF = 0:5 eV); hence we can use

f ' exp

µ
¡ E ¡ EF

kBT

¶
(7)

Physically, this means that the Fermi factor f can be approximated by a Boltzmann factor,
because there are few electrons in the conduction band.

It will be shown below that the density of states near the bottom of the conduction band
is approximately

dn

dE
=

(2m¤)3=2

2¼2~3
(E ¡ Ec)

1=2 (8)

Clearly it is convenient to use E ¡Ec as a variable to deal with states in the conduction band,
so we write eq. (7) in the form

f ' exp

µ
¡Ec ¡ EF

kBT

¶
exp

µ
¡ E ¡ Ec

kBT

¶

and substituting back in eq. (6) we obtain

n = exp

µ
¡Ec ¡ EF

kBT

¶
(2m¤)3=2

2¼2~3

1Z

Ec

(E ¡ Ec)
1=2 exp

µ
¡ E ¡ Ec

kBT

¶
dE

The integral gives (kBT )3=2 p
¼=2: In the intrinsic semiconductor that we consider, Ec ¡ EF =

Eg=2, where Eg = Ec ¡ Ev is the energy gap. We obtain then the result

ni = 2

µ
m¤kBT

2¼~2

¶3=2

exp

µ
¡ Eg

2kBT

¶
(9)
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as anticipated in eqs. (1) and (3).
We must still justify eq. (8). We can start from eq. (1.4) in Melissinos, which gives a

relation, for free electrons, between the energy E and the number of states per unit volume
having energy less than E:

E =
~2

2m

¡
3¼2n

¢2=3

Inverting this relation between n and E we find

3¼2n =

µ
2mE

~2

¶3=2

Differentiating, we obtain the density of states for free electrons:

dn

dE
=

(2m)3=2

2¼2~3
E1=2 (10)

States near the bottom of the conduction band represent electrons that are nearly free to move
from atom to atom with an effective mass m¤; the energy of motion must be reckoned from
the bottom of the band. Replacing E with E ¡ Ec and m with m¤ in eq. (10), we obtain eq.
(8).

In general, the electrons near the bottom of the conduction band move about with an
effective mass mc while the holes near the top of the valence move about with a different
effective mass mv: As a result, the intrinsic Fermi level is not exactly in the middle of the gap,

but eq. (9) is still true, provided that we use m¤ = (mcmv)
1=2 : The relevant formulas are

given in Melissinos, page 11, with

Nc = 2

µ
mckBT

2¼~2

¶3=2

Nv = 2

µ
mvkBT

2¼~2

¶3=2

and Ns = (NcNv)1=2 :
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