
Phys 312 – Assignment 1 – Due 23 Jan 97

1.

A parallel plate capacitor has a small hemispherical boss of radius a on one of its plates.
To be definite, you can assume that A is the area of each plate, d the separation between
them, with

p
A À d À a; take the plates to be perpendicular to the z axis and put the boss

at the center of the lower plate. However, the results you will obtain hold more generally,
as long as a is much smaller than the distance from the boss to the closest edge. The
problem is to find the electric field.

You can imagine that the lower plate is a flat plain, the upper plate is the bottom of
a large cloud, and the hemispherical boss represents a hill in the middle of the plain, or
maybe a tree in the middle of a field. The problem then tells you something about the
chances of being struck by lightning in hilly country, or why isolated trees are at risk of
being struck.

(a) If ¾0 is the charge density on the lower plate far away from the boss, what is the
electric field far away from the boss, E0? You can (approximately) relate ¾0 to the area,
A; and to the total charge on the plate, Q; but it is not necessary to do so.

(b) Find the field and the charge density everywhere on the lower plate.

(c) Where on the lower plate does the maximum electric field occur, and how much
larger than E0 is it?

(d) Where on the lower plate does the minimum electric field occur, and how much
smaller than E0 is it?

(e) Using a computer program, draw a set of equipotentials, starting from the lower
plate. The graph should illustrate how the equipotentials become smooth for z À a:



Answer

(a) From Gauss’ Law we find ¾0 = E0"0, (in SI units, where "0 = 8:85£10¡12C2=N ¢m2)
or ¾0 = 4¼E0 (in Gauss – cgs units). See for example Serway, page 481, or Tipler, page
647. Hence E0 = ¾0="0 (SI) or E0 = 4¼¾0 (Gauss – cgs), is the field on the lower plate, far
from the boss. It is also true that ¾0 = Q=A + corrections of order a2=A:

(b) This problem is equivalent to that of a conducting sphere in a uniform applied field.
It is also similar, mathematically, to the problem of fluid flow past a sphere, for a non-
viscous, incompressible fluid. (See last semester’s notes for the very similar problem of flow
past a cylinder: http://www.phys.virginia.edu/classes/311/notes/fluids11/node19.html).
Anyhow, the hint was given in class to find first the electrostatic potential © and then use
E = ¡r©: In empty space © satisfies the Laplace equation r2© = 0; and on the surface
of the conducting plate © must be constant. Since © is defined up to a constant, one can
set © = 0 on the lower plate. The hint was given to look for a solution of the form

© = A1 z +B1 z=r
3 =

³
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´
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One can verify that this expression satisfies the Laplace equation expressed in spherical
coordinates
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The problem then is to determine A1 and B1 using the data of the problem:

(i) For large r; the field must be E0ẑ: Since © reduces to A1 z for large r; we see that
A1 = ¡E0:

(ii) © clearly vanishes on the plane z = 0. It must also vanish on the boss, i.e., for r = a
and µ · ¼=2: This gives

¡E0 a+B1=a2 = 0

Hence B1 = E0 a3 and we find
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The electric field is obtained from the electrostatic potential by taking a gradient:
E = ¡r©: The field on the flat part of the plate is most easily calculated in Cartesian
coordinates. Recall that the gradient of a function points in the direction in which that
function changes most rapidly (Tipler, p. 671, Serway, p. 716) and that © is constant in
the plate, i.e. it does not vary with x or y in the flat part. Thus the gradient of © at the
surface of the plate (z = 0) is in the ẑ direction, with
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which is valid for r ¸ a: The derivative is computed at constant x and y; and so the first
expression in eq. (1) is convenient. (The derivatives with respect to x and y, i.e. the
components of gradient in the x̂ and ŷ directions, vanish when the expression is evaluated
at z = 0.)

The field on the boss is most easily calculated in spherical coordinates. Again © is
constant in the plate, that is, it does not vary with the angles µ or Á. Thus the gradient of
© is in the r̂ direction, with

Er = ¡@©
@r

¯̄
¯̄
¯
r=a

= 3E0 cos µ; (3)

valid for µ · ¼=2: The derivative is computed at constant µ and Á; and so the second
expression in eq. (1) is convenient. (The derivative with respect to Á is zero, and the
derivative with respect to µ vanishes when the expression is evaluated at r = a.)

Everywhere on the plate the charge density is E"0 (in SI), or E=4¼ (in Gauss – cgs).

(c) Expression (2) varies from E0 at r ! 1 to 0 at r = a, and expression (3) varies
from 3E0 at µ = 0 to 0 at µ = ¼=2. Hence, the maximum field is 3E0; at the top (µ = 0).

(d) The minimum field is zero, at the foot of the boss. Hilltops are to be avoided during
thunderstorms; it is best to be at the foot of the hill (provided the top is a safe distance
away).
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(e) We plot the dimensionless ratio ©=E0a as a function of distance divided by a, i.e.,
we use E0a as the unit of potential and a as the unit of length.

Here is a view of the boss and of the equipotentials ¡© = z
Ã
1¡ 1

(x2 + y2 + z2)3=2

!
for

¡© = 0:5 and 1:5: where we have taken a = 1.

3

2.5

2

1.5

1

0.5

0
3 2.5 2 1.5 1 0.5 0

3
2

1
0

-1
-2

-3

4



Here are plots of intersections of equipotentials with the xz plane, ¡© = z
Ã
1¡ 1

(x2 + z2)3=2

!

for ¡© = 0:1 up to 0:5 (top panel) and ¡© = 0:5 up to 2:5.
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