
1. Explain why a transient current flows when you touch a piece of n-type
semiconductor to a piece of p-type semiconductor. What is the direction of
current flow? What stops the current after a while? Similar questions are in
Bloomf ield, p. 439.

Somewhat naively the picture is as follows. Start with germanium (Ge)
atoms which have four valence electrons. Take the Ge ions (the nuclei plus
the bound electrons) and construct a lattice. Then find the states associated
with this structure and fill them up (obeying the Pauli exclusion principle
and starting with the lowest energy). One should find that the energies of
these states fall into “bands” separated by “gaps.” Furthermore, one should
find that the last filled state completes a band (the valence band) and that
the next available state is Eg higher in energy.

Now let us consider substituting a small percentage of As atoms for some
of the Ge. Since As has five valence electrons, it would be rather similar to
the above calculation except that we have some extra electrons which must
be in the higher (conduction) band. This isn’t quite right because the As
ions are different from the Ge ions (they have more charge); however, it is
true that the Ge doped with As has very similar energy levels as pure Ge
and that there are filled states that are close in energy to the conduction
band of pure Ge. This is called an n-type semiconductor.

If we substituted gallium Ga atoms (which have three valence electrons)
instead, the energy levels would again be quite similar to those in pure Ge,
but this time there would be some unfilled levels (holes) in the valence band.
This is called a p-type semiconductor.

Now if we brought the As doped Ge (n-type semiconductor) into contact
with the Ga doped Ge (p-type semiconductor), we would have electrons in
the conduction band on the n-type side and holes in the valence band on
the p-type side. We could lower the energy by moving some of the former
into the latter. Since the electrons are negatively charged, the current would
be from the p-type side to the n-type side. There is also a concentration
gradient, i.e. more electrons on one side, more holes on the other, which
would lead to a diffusion that from a region of high concentration to one of
lower concentration. This effect pushes electrons in the same direction as
the energy considerations. In fact, the two are related. The real quantity
driving the migration of electrons is the “chemical potential.”

Before this electron migration started both sides were electrically neutral,
but now negative charges are building up on the p side and positive on the
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n side. It costs energy to separate charge. So when the gain in energy
from moving electrons from conduction to valence bands balances the loss
in energy from separating the charges, the current stops. (The current stops
when the chemical potential is the same on both sides.)

This process creates a “depletion region” or “depletion zone,” and it is
important in the operation of diodes.

2. Melissinos, exercise 1.1.
(a) Look up the atomic mass number A, and density ½ of Si and Ge and

find the number of atoms per cm3.
(b) Assuming that the atoms are in a diamond structure (8 atoms/unit

cell) find the lattice spacing.
(c) Find the resistivity of Ge at room temperature if it is doped with

1015 atoms=cm3 of Sb. Assume a mobility of the donor’s electrons of ¹e =
1200 Cm2=V ¢ s.

(a) From the CRC Handbook we find the mass numbers A and densities
½ for Si and Ge

ASi = 28:09 ½Si = 2:33 g=cm
3

AGe = 72:59 ½Ge = 5:32 g=cm
3 (1)

Noting that there are NA atoms in a mole where NA is Avogadro’s number,
we can calculate the number density from the mass density and the atomic
mass, as follows

Si :
µ
2:33 g

cm3

¶ Ã
6:022£ 1023 atoms

28:09 g

!
= 5:00£ 1022 atoms=cm3;

Ge :
µ
5:32 g

cm3

¶ Ã
6:022£ 1023 atoms

72:59 g

!
= 4:41£ 1022 atoms=cm3: (2)

(b) Next, from the number density we can calculate the volume of a unit
cell which contains 8 atoms in this instance

Vcell¡Si = 8 atoms

Ã
cm3

5:00£ 1022 atoms

!
= 1:60£ 10¡22cm3;

Vcell¡Ge = 8 atoms

Ã
cm3

4:41£ 1022 atoms

!
= 1:81£ 10¡22cm3: (3)
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Then from the volume of the unit cell we can calculate the lattice spacing

aSi =
³
1:60£ 10¡22 cm3

´1=3
= 5:43£ 10¡8 cm = 5:43 angstroms;

aGe =
³
1:81£ 10¡22 cm3

´1=3
= 5:66£ 10¡8 cm = 5:66 angstroms: (4)

(c) First of all we can see by the position of Antimony (Sb) on the periodic
table that it is a “donor” and that we are talking about an “n-type” (doped)
semiconductor. The intrinsic carrier density ni of Ge calculated at the end of
Section 1.1 in Melissinos is 1013= cm3; it is much less than donor density ND
given in the problem as 1015= cm3. Therefore, the carrier density of negative
charges n is essentially equal to ND. The carrier density of positive charges
is approximately n2i =ND (see Melissinos, p. 11) which is very much smaller,
and so we will neglect any contribution from positive carriers hereafter.

When only one carrier contributes the conductivity ¾ is given by

¾ = qn¹; (5)

where q is the charge, n the carrier density, and ¹ the mobility (see Melissinos,
p. 13). Thus

¾ =
³
1:60£ 10¡19 C

´ ³
1015 =cm3

´ ³
1200 cm2=V ¢ s

´
=
0:192 C

V ¢ s ¢ cm : (6)

Converting the cm to m and taking the reciprocal gives the resistivity ½ =
5:21£ 10¡2  ¢m.

3. Melissinos, exercise 1.3.
Consider germanium doped with 1014=cm3 atoms of arsenic.
(a) Find the conductivity assuming a reasonable value of the mobility of

the impurities.
(b) The energy gap of germanium is Eg = 0:67 eV and the density of

states at the edge of the conduction band can be taken as Nc = 1019=cm3.
Estimate the intrinsic carrier density for germanium at room temperature.

(c) Use the result of (b) to find the density of holes in the doped sample.
(Note that part (a) is closely related to part (c) of exercise 1.1.)

(b) I think it’s more sensible to answer part (b) first. The intrinsic carrier
density ni is related to the density of states at the edge of the conduction
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band NC through

ni = NC exp
µ
¡ Eg
2kT

¶
: (7)

(See Melissinos, p. 8.) So

ni = 10
19=cm3 £ exp

Ã
¡ 0:67 eV

2(eV=40)

!
¼ 1:5£ 1013=cm3: (8)

(a) Arsenic (As) is a donor. The density of donors ND = 1014=cm3 is
many times larger than the intrinsic carrier density, so the carrier density
we need in the calculation of the conductivity (¾ = qn¹) is approximately
the donor density (n = ND). Next we must assume a reasonable value for
the mobility of donor electrons in Ge. Let us take as an order-of-magnitude
approximation 103 cm2=V ¢ s. Then

¾ =
³
1:60£ 10¡19 C

´ ³
1014 =cm3

´ ³
103 cm2=V ¢ s

´
=
0:016 C

V ¢ s ¢ cm = 1:6= ¢m:
(9)

Using a relationship between the hole and electron densities and the in-
trinsic carrier density (np = n2i ) and the approximation n ¼ ND led to eq.
(1.12) in Melissinos, which yields in this particular case

pn ¼ n2i
ND

¼ 2:3£ 1012=cm3: (10)

4. Melissinos exercise 1.4.
Make a plot of the Fermi-Dirac distribution at T = ¡78±C, room tem-

perature, and a T = 500±C when EF = 1 eV.
(Accurate plots are expected. First plot for 0 < E < 2 eV and then for

0:8 eV < E < 1:2 eV.)

The Fermi-Dirac distribution is given by

f(E) =
1

exp[(E ¡EF )=kT ] + 1
; (11)

where EF is the Fermi energy. Let us express kT for the various temperatures
in eV ’s:
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T (in C) kT in eV’s
¡78± C 0:017 eV
17± C 0:025 eV
500± C 0:067 eV

Now let us plot the Fermi distribution for the range 0 < E < 2
1=(exp((E ¡ 1:0)=0:017) + 1)
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and then in a smaller region surrounding the Fermi energy (0:8 < E <
1:2)
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This function gives the average number of fermions filling a level with
energy E. Because we are talking about fermions, f(E) varies between zero
and one. At T = 0, f (E) is a step function — equal to one for E < EF and
equal to zero for E > EF .
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