
AC Circuits

The Capacitor

Two conductors in close proximity (and electrically isolated from one another) form a capacitor.  An electric field is produced by
charge differences between the conductors.

The capacitance of such a device is defined by:
C [Farads] = V [Volts] / Q [Coulombs], where Q is the differential charge between the
conductors.
i.e. A capacitor of 1 Farad in capacity with 1 Coulomb of stored charge will have 1 Volt of
potential difference across its leads.

i) Charges on the plates have equal magnitude and opposite sign.
ii) Positive Q at A give V_AB > 0

An approximation of the capacitance formed by two conductors (ignoring edge effects) is given by:

C=
A
d

A=overlap area between plates [m2]
=dielectric permittivity of media between the plates [F m−1]

d=distance betwen the plates [m]

A capacitor can pass a time varying signal, but is an open circuit for DC. A surge of charge onto one
plate causes an identical surge of charge out of the other plate.

differentiating V = Q/C
dV
dt
= 1

C
dQ
dt
= I

C
 current∝ dV

dt
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A simple RC Circuit

A constant voltage source applied at t=0 by closing a switch.  Using KVL:
 

V=IR 1
C∫ I dt

differentiating each term yields: 
dI
dt
 1

RC
I=0

solving for the current gives I=I 0 e−t /RC

V C=
1
C∫0

t

I dt=V 01−e−t /RC 

I C=C
dV
dt
= 1

R
e−t /RC

Voltage across R is given by:

V R=V 0 e−t /RC
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RC integrator / Low pass filter

V O=
Q
C
=∫ I dt

C

KVL:
V i−IR−V o=0

subs. I=C
dV
dt

dV o

dt
 1

RC
V o=

1
RC

V i

Note: if V o≪V i
dV o

dt
≃ 1

RC
V i

and V o≃
1

RC∫0
t

V it ' dt '

In other words this circuit can approximate the integral of V i

The more rigorous solution:
Multiply each side of the differential equation by the integration factor: et /RC 

d
dt
V ot e

t /RC=
V i t 
RC

et /RC

V ot =
1

RC∫0
t

V i t ' e−t−t ' /RC dt 'V o0e
−t /RC take V o0=0 it's just a potential...

now consider the limiting case: 

V ot ≃∫
0

t

V i t ' dt ' for t≪RC

For times small compared to RC the circuit integrates.  This is also the region in which V_o << V_i.
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Integrator response to square pulse

define:
T≡pulse width
≡RC

≪T Bad integrator

Qualitatively: The capacitor “rounds” sharp corners of V_i.  
Later we'll see that high frequency components are 

approximately shorted to ground in this configuration.

≈T

≫T Good integrator
But V o is very small
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RC differentiator / high pass filter / DC blocker

V O=IR

KVL:

V i−
Q
C
−V o=0

Differentiate and use I=
V o

R
dV o

dt
 1

RC
V o=

dV i

dt

Note: if 
dV o

dt
≪

dV i

dt
V ot ≃RC

dV i

dt
In this approximation, the circuit differentiates V i

Rigorous solution obtained again by multiplying the integration factor

Multiply each side of the differential equation by the integration factor: et /RC 

d
dt
V ot e

t /RC=
dV it 
dt

e t /RC

V ot =∫
0

t dV i t ' 
dt '

e−t−t ' /RC dt 'V o0e
−t /RC take V o0=0 it's just a potential...
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Consider two limiting cases:

(1)t << RC  “DC blocking regime”

use e−t−t ' /RC1 for 0t 't

then V ot =∫
dV i t ' 
dt '

dt '=V i t −V i 0

V o  follows changes in V i

(2)t>>RC Differentiator 

rewrite V ot =∫
0

t dV i t ' 
dt '

e−t−t ' /RC dt '  using partial integration ∫
a

b

u dv=[uv ]a
b−∫

a

b

v du

V ot =[V i t −V i 0e
−t /RC ]− 1

RC∫0
t

V it ' e−t−t ' /RC dt '

for t>>RC the integral is dominated for values t' ~ t

Approximation for V_i is valid:V i t ' ≃V it −
d
dt

V it t−t ' and

V ot ≃V it −V i t ∫
0

t

e−t−t ' /RC dt '
RC

1as
t

RC
∞

RC
dV i t 

dt
∫
0

t

t−t ' e−t−t ' /RC dt '

RC 2
1as

t
RC

∞

thus: V ot ≃RC
dV i t 

dt

In this regime, the circuit differentiates.
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This is useful in situations where
the time varying signal voltage is
sitting on a DC pedestal voltage.

The capacitor “blocks” the DC
component.



AC Circuits

Differentiator response to square pulse

~T Bad differentiator

≫T~ D.C. Blocker
output sags at flat-top, 
also slight overshoot on trailing edge

≪T Good Differentiator
but V o is small
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Inductors:

V_AB = L dI/dt
Lenz's law gives sign of V and dI/dt.  If V_AB>0 then I is increasing in the direction of the
arrow.

Integrators/differentiators may be constructed with LR circuits, similar to the RC examples we
have seen, but there is no equivalent of the DC blocker.

High Pass Configuration

(high frequencies imply large dI/dt, thus large voltage drop across inductor.  This will
become more clear when we discuss complex impedance.)

Low Pass Configuration

Previous equations derived for RC circuits also apply here, but RC → L/R = t

Here we have reached a severe disadvantage of time-domain analysis.  The relationship between V and I for a capacitor or an inductor
is not linear, in the restricted sense like Ohm's Law.  Applying network analysis techniques to a network containing L/C components
yields a matrix of differential equations instead of a simple linear system.

We regain linearity in the network analysis by looking instead at the frequency dependence of the circuit.
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Frequency Domain:

KVL, KCL and Ohm's Laws hold for each instant of time.

For example: VAB(t)+VBC(t)+VCA(t)=0

This can be expressed in terms of the Fourier Transform of the voltages as follows

V ABt V BC t V CAt =0= 1

2
∫
−∞

∞

[ V AB V BC  V CA]e
j t d

where j≡−1
also e j t=cos  t  j sin  t 

For electronics applications j is used instead of i to prevent confusion with notations for current.

The completeness relation {
1

2
∫
−∞

∞

e− ' t dt=− ' } allows us to restate the KVL in terms of the Fourier amplitudes:

V AB V BC  V CA=0

Similarly for KCL: ∑
node

I n=0

Note: the amplitudes V  and I are complex quantities, but measured V and I are always real →
V −= V * , I −=I *

V t = 1

2
∫
−∞

∞
V e j t d=2ℜe 2∫

0

∞
V e j t d

absorbing the factor of two into the Fourier amplitude we define: V t ≡ℜe
1

2
∫
0

∞
V e j t d

Don't panic! You won't need to solve such integrals to understand the circuits you are building here... But is is helpful to have a
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basic understanding of what it means to look at a signal in the frequency domain.
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Example of physical interpretation of the transform

It is easiest to understand the Fourier transform is in the case of periodic functions.  Any periodic function can be represented in terms
of the Fourier series of sin and cos functions.  

f t =
a0

2
∑

n=1

∞

[an cos n0 t bn sin n0 t ]

where:

an=
2
T ∫−T /2

T /2

f t cos n0 t dt

bn=
2
T ∫−T /2

T /2

f t sin n0 t dt

T≡period of repitition 0=2∗/T

The integral form used above applies to non-periodic functions (limit as T approaches infinity).

The figure below show an example of using the series to decompose a
periodic square wave with period T=2p.  The square wave decomposes
into the following Fourier components:

f t = 4
 [∑n=1

∞

sin nt 

n ]
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Next we apply the frequency domain formalism to the defining equations for capacitors and inductors.

1) Capacitor: 

dV
dt
= I
C

 d
dt∫ V e j t d=∫ j V e j t d= 1

C∫ I e
j t d

 V =I  1
jC

1
jC

≡X C
The capacitive reactance

2) Inductor: V=L dI
dt

 V =I  j L

j L≡X L The inductive reactance

In general we use the term impedance, Z,  to describe either resistance, reactance, or a combination of both. 

Notice that in terms of specific frequencies linearity has been restored to the equations defining our voltage and current relationships.
This leads to the generalized form of Ohm's Law : V = IZ or I = YZ

Z  the (generally) frequency dependent impedance (generalization of Resistance)

Y  the (generally) frequency dependent admittance (generalization of Conductance)

KCL and KVL are also satisfied.

From this point we will omit the “~” notation when referring to the Fourier amplitude.  It will be obvious from the context when we
are talking about the frequency dependent performance of a circuit.
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AC networks may be analyzed using identical techniques to the DC case.  But we will implicitly be restricted to a single frequency and
the solutions for V's and I's will be the Fourier amplitudes at that frequency.

Z TOTAL=Z 1Z 2...

1
Z TOTAL

= 1
Z 1

 1
Z 2

...

Generalized Voltage Divider

V o=
Z 2

Z 1Z 2

V i

Generalized Thevenin Theorem also holds for
linear circuits with reactive components

V Th=V O.C.  @  Z Th=
V O.C.

I S.C.

 @ 
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Complex notation in electronics

In a complex, linear circuit driven by a sinusoidal source all currents and voltages in the circuit will be sinusoidal.  These currents and
voltages will oscillate with the same frequency as the source and their magnitudes will be proportional to the magnitude of the source
at all times.  The phases of the currents and voltages in the circuit will likely be shifted relative to the source.  This is a consequence of
the reactive elements in the circuit.  When using the generalized forms of Ohm's / Kirchoff's Laws phase changes for AC signals are
often important.  

The superposition principle allows us to solve for voltage or current for individual driving frequencies, the total voltage or current of
interest is simply the superposition of all sinusoidal components of the driving source added back together with the amplitude and
phase modifications caused by traversing the circuit.

First consider an AC signal driving a capacitor:

V in=Acos  t =V C

I C=C
dV
dt
 I C=AC sin  t =AC cos  t−90 ˚ 

The current is 90 degrees out of phase with voltage.  (Lags the voltage by 90 degrees)

Since both voltage magnitudes and phases are generally affected by circuits with complex impedances, it is useful to treat V, I as
complex quantities as well in order to keep track of both magnitude and phase.  Physical voltages and currents are always real, the
complex notation that follows is used as an aid for calculations, but only the real part of a complex voltage or current is used to
represent physical quantities.

Start with a sinusoidal voltage: V=V 0 cos t  convert this into a complex expression as follows: V=V 0 cos  t  jV 0 sin  t 
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The imaginary term is has no physical significance, we add this term to allow us to express the voltage in exponential notation (via
Euler's relation V=V 0 e j t Physical voltages are recovered by taking the real part of the complex expression.  We'll see the
advantage of this notation below.
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Graphically the voltage can be represented on the complex plane as follows:

The magnitude vector rotates with frequency w.  It is clear that the real component (projection onto the
real axis) of the voltage is our input voltage.  The phase angle of the voltage, f, at any time is:

= t=tan−1 {Im V
ReV

}

Let's use this notation to analyze the low pass  RC filter we saw above.

Using the generalized Ohm's law, this circuit is a
frequency dependent voltage divider:

V o

V i

=
ZC

Z RZ C

=
1 / jC

R1/ jC
= 1

1 jRC
at DC (w=0) Vo = Vi, for large w Vo approaches 0

disregarding the phase we can relate the output and input magnitudes: ∣V o

V i
∣= 1

12 R2C 2
=A

for the phase relationship: 
Note: the output voltage has acquired a change in amplitude and a
change in phase.  Both depend on the frequency.

≪ 1
RC

A1 and 0

≫ 1
RC

A 1
RC

and −/2

16

V o=
V i

1 jRC
=

V i

12 R2 C 2 1− jRC =V i Ae− j

where =tan−1−RC (phase angle for the divider circuit)

substitute: V i=V 0 e j t

V o=V 0 e j t Ae− j=AV 0 e j  t−RC 

the physical voltage V o=ReV o=AV 0 cos  t−RC 
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Rule of thumb: large phase shifts accompany large attenuations.
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Plot of amplitude and phase shift versus frequency:

At the breakpoint frequency: 

3dB=
1

RC
f 3 dB=

3dB

2

3 dB=
−

4

∣V o

V i
∣= 1

2
=.707

The expression for 
V o

V i

is called the Transfer Function of the network.

The Gain or Attenuation ∣V o

V i
∣ is conventionally expressed in units of

decibels (dB).  Gain in dB ≡20 log10∣V o

V i
∣

∣V o

V i
∣ Gain (dB)

0.707 -3dB

0.5 -6dB

0.1 -20dB

0.01 -40db

In the attenuation region (beyond the 3dB point) the output falls at 6dB/octave or 20dB/decade
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Input and output impedances

Zin – roughly a circuit's impedance to “ground” seen by a source driving the circuit (impedance to ground looking into circuit's input)

for the low pass filter: 
Z in=V / I=R1/ jC

R   for  ≫1/RC
∞  for ≪1/RC

Zout – measure of circuit's ability to drive a load (roughly impedance to “ground” looking into circuit's input).  Zout  follows from
Thevenin's Theorem (Zout = Zth):

V O.C.=
V i

1 jRC

I S.C.=
V i

R

Z out=
V O.C.

I S.C.

= R
1 jRC

If Zin of circuit element B is infinite, then VP =  VOC

If Zin of circuit element B = Zout of A, then VP =  VOC/2

In order for a circuit to drive a load without significant signal
attenuation we require:  Zin >> Zout.  In this limit circuit element B
will not significantly perturb the performance of element A.
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High pass filter / differentiator

V o

V i

= R
R1/ jC

=
jRC

1 jRC

∣V o

V i
∣= RC

12 R2 C 2 tan−11 /RC 

≪1/RC ∣V o

V i
∣0  and  /2

≫1/RC ∣V o

V i
∣1  and  0

Z in=R1/ jC

Z out=
R

1 jRC

same as low pass filter (but V_Thev is different)
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Band pass filters

The importance of calculating input and output impedances of the circuits
above is clear when one attempts to combine a High Pass and Low Pass
filter to make a bandpass circuit.

Notice this filter is composed of a low pass filter followed by a high pass filter.  In general, the response of the low pass filter is
modified by the addition of the second filter, because not all of the current flowing through R1 passes through C1.  Instead some
current is diverted through the high pass filter which acts as a load on the low pass section.  

In general we cannot simply multiply the transfer functions for the low and high pass filters to get the combined transfer function.  But,
in the limit Z in

High Pass≫Z out
Low Pass we approximately recover the simple solution.  

For the low pass filter section: V Th=
V i

1 jR1 C1

Z Th=
R1

1 jR1 C1

=Z out Note: Zout < R1 for all w.  
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Choose min Z in
High Pass=R2≫R1V LP≃

V i

1 jRC
i.e. For all w this ensures Z in

High Pass≫Z out
Low Pass

 
As a rule of thumb we would choose R2≥10 R1 (Typically we'll use a factor of 10 to satisfy a “>>” relation.)

The high pass network responds to this input in the usual way.

V o=V LP

jR2 C 2

1 j omegaR2 C 2

≃V i

jR2C 2

1 jR1 C11 jR2 C 2
And the output is just the product of the individual transfer functions.

To design a bandpass filter follow these steps:

1) choose R1 C1=
1
1

2) let R2≥10 R1

3) choose C 2 so that R2 C 2=
1
2
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Resonant band pass circuit

Z LC=Z L∥ZC=
1

1
j L

 jC
= L /C

j L1 / jC

Z LC=
R0

j 

0

−
0




where R0≡L /C 0≡
1

LC

V o

V i

=
Z LC

RZ LC

= 1

1 j
R
R0



0

−
0




2

∣
V o

V i

∣= 1

1Q2

0

−
0




2
tan =Q 

0


−

0

 where Q≡ R
R0

For every  '0 there corresponds an  ' '0 such that
∣V o ' /V i  ' ∣=∣V o ' ' /V i  ' ' ∣ .  By superposition one can

show that  ' ' '=0
2

Define two 3dB points:∣
V o1
V i 1

∣=0.707=∣
V o2
V i2

∣

The Bandwidth is defined as B=
2−1

2
= 1

2
2−

0
2

2

 using12=0
2
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at2 Q 
2

0

−
0

2

=1= Q
0

2−
0

2

2

  B= 1
2

0

Q
Q=RC

L
= R
0 L
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It is also possible to build a trap or notch filter:
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The scope probe (a frequency independent voltage divider)

When a simple piece of coaxial cable is used to connect a circuit to an oscilloscope we are creating a low pass filter in the following
manner:

Cable behaves as capacitance of ~ 30pf/foot if not properly terminated.
(more on this when we discuss transmission lines)

This circuit forms a low pass filter with: ≃Rout C cableC in for
example if Rout=100 K ,C=100 pf  f 3dB=16 kHz

(Perform in-class test using signal generator + 100K resistor)

The scope traces for high output impedance circuits can be very biased if there is no compensation for the low pass filter formed with
the cable and scope input.

A model to a scope probe (connected to a scope) is:
Notice: a series capacitor is added at the tip of the probe and a
variable capacitor is added at the base of the probe for
compensation
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Analysis of the probe circuit

V o

V i

=
R2∥C 2

R1∥C1R2∥C 2
=

R2

1 jR2 C 2

R1

1 jR1 C1


R2

1 jR2 C 2


R2

R1R2


if R1C1=R2 C 2

The probe serves as a frequency independent voltage divider once the compensation capacitor is adjusted to satisfy the RC equality
above.

The input impedance is: Z in=
R1

1 jR1C 1


R2

1 jR2C 2


R1R2 as 0

1
j
 1
C1

 1
C 2

 as ∞

Therefore, compared to the scope + cable, the addition of the scope probe 
1) increases the input resistance R2 R1R2≃10 R2

2) decreases the input capacitance C 2
C1 C 2

C1C 2

≃ 1
10

C 2

Note: is it important to have R1 C1=R2 C 2 , otherwise the response will have a complicated frequency dependence and distorted
signals will result.
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Transformers

Start with the inductor:

Ohm's Law gives: V t =L
dI t 

dt

Faraday's Law: change in magnetic flux induces voltage across a coil V t =
−d 

dt
where =B⋅A Field x Area

for multiple turns V t =−N turns

d 
dt
=L

dI t 
dt

Using magnetic flux to couple two coils:

(“dots” represent in-phase points on the transformer, depends on
directions of windings.)

Ideal transformer (100% f coupling)

V 2=−N 2

d 
dt

V 1=−N 1

d 
dt


V 2

N 2

=
V 1

N 1

V 2

V 1

=
N 2

N 1

Ratio of voltages = ratio of

turns

Power = V*I is constant across the ideal transformer (Energy in = Energy out), therefore 
I 2

I 1

=
N 1

N 2
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Current goes as inverse of the ratio of turns.

29



AC Circuits

Transforming impedances

impedance Z = V / I

impedance seen by source Z 1=
V 1

I 1

load impedance Z 2=
V 2

I 2

substitute 

V 2=V 1 N 2/N 1 I 2=I 1 N 1/N 2

Z 2=
V 1

I 1


N 2

N 1


2

=Z 1
N 2

N 1


2

 Z 1=Z 2
N 1

N 2


2

(Load) impedance seen by source is altered by the transformer.  Transformer can allow optimal impedance matching between source
and load.  Note: maximum power if transferred from source to load in Z_out(source) = Z_in(load).

Typical applications for transformers:
1) change V/I levels from on circuit to another
2) impedance matching
3) isolation, i.e. Change of ground reference
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Transmission lines

So far we have treated wires and cables as simple, non-interfering elements that “instantly” transmit currents and voltages without
significant changes in magnitude.  A transmission line is a pair of conductors that carries a signal between two points in a finite time.

A transmission line of length l has a transmission velocity u for signals moving in the line.  For low frequency signals ≪u / l the
voltage is the same on both sides of the cable and we can safely approximate the line as in infinite speed wire.  For high frequency
u / l and the voltages will be different on each end of the cable.  In this case there will be measurable effects due to the length of

the cable.

A two conductor cable can be modeled as in the picture
below.  All conductors possess a small amount of self
inductance per unit length.  In the cable there is also stray
capacitance between the shield and conductor.  In this
model we will neglect the small series resistance of the
conductor.  The conductor can be seen as a large number of
small series inductors and a small parallel capacitors.  This
model is called a lumped constant LC circuit.
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Applying KVL and KCL:

start with L
din

dt
= 1

C
qn−1−

1
C

qn  then differentiate both sides: L
d 2 in

dt2 =
1
C

dqn−1

dt
− 1

C

dqn

dt
= 1

C
in−1−in−

1
C
in−in1

replacing L and C with inductance/unit length l=L / x , capacitance/unit length c=C / x

d 2 in

dt2 =
1
lc  1
 x  in1−in

 x
−
in−in−1
 x 

in the limit small  x we can write: 
∂2 i

∂ t2=
1
lc
∂2 i

∂ x2

this is an example of the wave equation with general solution: i x , t =i1 x−ut i2 xut  where u is the velocity u=1/ lc
(~2/3 c for typical cables)

similarly the voltage solution is: v  x , t =v1x−ut v2 xut 
in each case the two terms represent signals moving forwards and backwards, respectively.

For a sinusoidal waveform, the forward moving signal can be expressed as: 
v  x−ut =V 0 e j x−ut 

i  x−ut =I 0 e j x−ut 

The cable impedance can be found by rewriting L
din

dt
= 1

C
qn−1−

1
C

qn after substituting inductance and capacitance per unit length:

∂ in

∂ t
=− 1

l
∂v
∂ x

then substituting our solutions for v , i ,u yields: V 0= l
c

I 0 therefore Z= l
c
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The impedance of the cable only depends on the inductance and capacitance per unit length.  It is purely resistive and does not depend
on the length of the cable.  A transmission can be treated as a device of fixed impedance regardless of length.

Impedances for common cables

RG-58 coax 50 Ohms

Coax for TV signals 75 Ohms

Flat antenna wire 300 Ohms

Consider a shorted transmission line.  A pulse from the
voltage source causes a wave to propagates from VA to VB

in time T.  VB is necessarily fixed to 0V.  A wave of
opposite phase is created at the short.  This appears as a
reflection that propagates backward and cancels the signal
at VA.

Next consider a line terminated with a resistive load.  If Zload >> Z0, the
boundary condition at point B is IB=0.  This causes a non-inverted reflection
of the signal with amplitude equal to the signal applied at A.

In general the magnitude and sign of the reflected signal is given by:
v reflected

vincident

=
RT−Z 0

RTZ 0
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Consider a 50ns long transmission line with a characteristic impedance Z0

of 50 Ohms.  We can define a short pulse as a pulse whose duration is 
<< 50ns and a long pulse as one whose duration is >> 50ns

Response to a short pulse for Rterm >>  Z0:

Response to a short pulse for Rterm <<  Z0:
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Response to a long pulse for Rterm >>  Z0 Response to a long pulse for Rterm <<  Z0

Effect of terminating with a capacitor ∣Z load∣=∣1/c∣
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Charging an unterminated line, RC time constant with steps.

36


