The Capacitor

Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors.

The capacitance of such a device is defined by:
C [Farads] $=\mathrm{V}$ [Volts] / Q [Coulombs], where Q is the differential charge between the conductors.
i.e. A capacitor of 1 Farad in capacity with 1 Coulomb of stored charge will have 1 Volt of potential difference across its leads.
i) Charges on the plates have equal magnitude and opposite sign.
ii) Positive Q at A give $\mathrm{V} _\mathrm{AB}>0$

An approximation of the capacitance formed by two conductors (ignoring edge effects) is given by:

$$
\begin{gathered}
C=\frac{A \varepsilon}{d} \\
\varepsilon=\text { dielectric permittivity of media between the plates }\left[\mathrm{F} \mathrm{~m}^{-1}\right] \\
d=\text { distance betwen the plates }[\mathrm{m}]
\end{gathered}
$$

A capacitor can pass a time varying signal, but is an open circuit for DC. A surge of charge onto one plate causes an identical surge of charge out of the other plate.

$$
\begin{aligned}
& \text { differentiating } \mathrm{V}=\mathrm{Q} / \mathrm{C} \\
& \frac{d V}{d t}=\frac{1}{C} \frac{d Q}{d t}=\frac{I}{C} \rightarrow \text { current } \propto \frac{d V}{d t}
\end{aligned}
$$

A simple RC Circuit

A constant voltage source applied at $\mathrm{t}=0$ by closing a switch. Using KVL:

$$
V=I R+\frac{1}{C} \int I d t
$$

differentiating each term yields:

$$
\frac{d I}{d t}+\frac{1}{R C} I=0
$$

solving for the current gives $I=I_{0} e^{-t / R C}$

$$
\begin{gathered}
V_{C}=\frac{1}{C} \int_{0}^{t} I d t=V_{0}\left(1-e^{-t / R C}\right) \\
I_{C}=C \frac{d V}{d t}=\frac{1}{R} e^{-t / R C}
\end{gathered}
$$

Voltage across R is given by:

$$
V_{R}=V_{0} e^{-t / R C}
$$

RC integrator / Low pass filter

Note: if $V_{o} \ll V_{i} \rightarrow \frac{d V_{o}}{d t} \simeq \frac{1}{R C} V_{i}$
and $V_{o} \simeq \frac{1}{R C} \int_{0}^{t} V_{i}\left(t^{\prime}\right) d t^{\prime}$
In other words this circuit can approximate the integral of V_{i}
The more rigorous solution:
Multiply each side of the differential equation by the integration factor: $e^{(t / R C)}$

$$
\frac{d}{d t}\left(V_{o}(t) e^{t / R C}\right)=\frac{V_{i}(t)}{R C} e^{t / R C}
$$

$V_{o}(t)=\frac{1}{R C} \int_{0}^{t} V_{i}\left(t^{\prime}\right) e^{-\left(t-t^{\prime}\right) / R C} d t^{\prime}+V_{o}(0) e^{-t / R C}$ take $V_{o}(0)=0$ it's just a potential...
now consider the limiting case:

$$
V_{o}(t) \simeq \int_{0}^{t} V_{i}\left(t^{\prime}\right) d t^{\prime} \text { for } t \ll R C
$$

For times small compared to RC the circuit integrates. This is also the region in which V_o $\ll \mathrm{V}_{-} \mathrm{i}$.

Integrator response to square pulse

define:
$\mathrm{T} \equiv$ pulse width
$\tau \equiv R C$
$\tau \ll \mathrm{T}$ Bad integrator

Qualitatively: The capacitor "rounds" sharp corners of V_i.

Later we'll see that high frequency components are
approximately shorted to ground in this configuration.
Later we'll see that high frequency components are
approximately shorted to ground in this configuration.
$\tau \gg \mathrm{T}$ Good integrator
But V_{o} is very small

RC differentiator / high pass filter / DC blocker

$$
V_{i}-\frac{Q}{C}-V_{o}=0
$$

Differentiate and use $I=\frac{V_{o}}{R}$

$$
\frac{d V_{o}}{d t}+\frac{1}{R C} V_{o}=\frac{d V_{i}}{d t}
$$

Note: if $\frac{d V_{o}}{d t} \ll \frac{d V_{i}}{d t} \rightarrow V_{o}(t) \simeq R C \frac{d V_{i}}{d t}$
In this approximation, the circuit differentiates V_{i}
Rigorous solution obtained again by multiplying the integration factor
Multiply each side of the differential equation by the integration factor: $e^{(t / R C)}$
$\frac{d}{d t}\left(V_{o}(t) e^{t / R C}\right)=\frac{d V_{i}(t)}{d t} e^{t / R C}$
$V_{o}(t)=\int_{0}^{t} \frac{d V_{i}\left(t^{\prime}\right)}{d t^{\prime}} e^{-\left(t-t^{\prime}\right) / R C} d t^{\prime}+V_{o}(0) e^{-t / R C}$ take $V_{o}(0)=0$ it's just a potential...

AC Circuits

Consider two limiting cases:
(1)t \ll RC "DC blocking regime"

use $e^{-\left(t-t^{\prime}\right) / R C} \rightarrow 1$ for $0<t^{\prime}<t$
then $V_{o}(t)=\int \frac{d V_{i}\left(t^{\prime}\right)}{d t^{\prime}} d t^{\prime}=V_{i}(t)-V_{i}(0)$

This is useful in situations where the time varying signal voltage is sitting on a DC pedestal voltage.

The capacitor "blocks" the DC component.
V_{o} follows changes in V_{i}
rewrite $V_{o}(t)=\int_{0}^{t} \frac{d V_{i}\left(t^{\prime}\right)}{d t^{\prime}} e^{-\left(t-t^{\prime}\right) / R C} d t^{\prime}$ using partial integration $\int_{a}^{b} u d v=[u v]_{a}^{b}-\int_{a}^{b} v d u$
(2) $t \gg$ RC Differentiator

$$
V_{o}(t)=\left[V_{i}(t)-V_{i}(0) e^{-t / R C}\right]-\frac{1}{R C} \int_{0}^{t} V_{i}\left(t^{\prime}\right) e^{-\left(t-t^{\prime}\right) / R C} d t^{\prime}
$$

for $t \gg R C$ the integral is dominated for values $t^{\prime} \sim t$
Approximation for $\mathrm{V}_{-} \mathrm{i}$ is valid: $V_{i}\left(t^{\prime}\right) \simeq V_{i}(t)-\frac{d}{d t} V_{i}(t)\left(t-t^{\prime}\right)$ and
$V_{o}(t) \simeq V_{i}(t)-\underbrace{V_{i}(t) \int_{0}^{t} e^{-\left(t-t^{\prime}\right) / R C} \frac{d t^{\prime}}{R C}}_{\rightarrow 1 a s \frac{t}{R C} \rightarrow \infty}+\underbrace{R C \frac{d V_{i}(t)^{t}}{d t} \int_{0}^{t}\left(t-t^{\prime}\right) e^{-\left(t-t^{\prime}\right) / R C} \frac{d t^{\prime}}{(R C)^{2}}}_{\rightarrow 1 a s \frac{t}{R C} \rightarrow \infty}$ In this regime, the circuit differentiates.
thus: $V_{o}(t) \simeq R C \frac{d V_{i}(t)}{d t}$

Differentiator response to square pulse

$\tau \ll \mathrm{T}$ Good Differentiator

 but V_{o} is small
Inductors:

V_AB $=\mathrm{L} d \mathrm{I} / \mathrm{dt}$
Leenz's law gives sign of V and $\mathrm{dI} / \mathrm{dt}$. If $\mathrm{V} _\mathrm{AB}>0$ then I is increasing in the direction of the arrow.
Integrators/differentiators may be constructed with LR circuits, similar to the RC examples we
 have seen, but there is no equivalent of the DC blocker.

High Pass Configuration
(high frequencies imply large $\mathrm{dI} / \mathrm{dt}$, thus large voltage drop across inductor. This will become more clear when we discuss complex impedance.)

Low Pass Configuration

Previous equations derived for $R C$ circuits also apply here, but $R C \rightarrow L / R=\tau$

Here we have reached a severe disadvantage of time-domain analysis. The relationship between V and I for a capacitor or an inductor is not linear, in the restricted sense like Ohm's Law. Applying network analysis techniques to a network containing L/C components yields a matrix of differential equations instead of a simple linear system.
We regain linearity in the network analysis by looking instead at the frequency dependence of the circuit.

Frequency Domain:

KVL, KCL and Ohm's Laws hold for each instant of time.
For example: $\mathrm{V}_{\mathrm{AB}}(\mathrm{t})+\mathrm{V}_{\mathrm{BC}}(\mathrm{t})+\mathrm{V}_{\mathrm{CA}}(\mathrm{t})=0$

This can be expressed in terms of the Fourier Transform of the voltages as follows

$$
V_{A B}(t)+V_{B C}(t)+V_{C A}(t)=0=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\tilde{V}_{A B}(\omega)+\tilde{V}_{B C}(\omega)+\tilde{V}_{C A}(\omega)\right] e^{j \omega t} d \omega
$$

where $j \equiv \sqrt{-1}$
also $e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$
For electronics applications j is used instead of i to prevent confusion with notations for current.
The completeness relation $\left\{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\left(\omega-\omega^{\prime}\right) t} d t=\delta\left(\omega-\omega^{\prime}\right)\right\}$ allows us to restate the KVL in terms of the Fourier amplitudes:

$$
\tilde{V}_{A B}(\omega)+\tilde{V}_{B C}(\omega)+\tilde{V}_{C A}(\omega)=0
$$

Similarly for KCL: $\quad \sum_{\text {node }} \tilde{I}_{n}(\omega)=0$

Note: the amplitudes \tilde{V} and \tilde{I} are complex quantities, but measured V and I are always real \rightarrow

$$
\tilde{V}(-\omega)=\tilde{V}^{*}(\omega), \quad \tilde{I}(-\omega)=\tilde{I}^{*}(\omega)
$$

$$
V(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{V}(\omega) e^{j \omega t} d \omega=2 \Re e \sqrt{2 \pi} \int_{0}^{\infty} \tilde{V}(\omega) e^{j \omega t} d \omega
$$

absorbing the factor of two into the Fourier amplitude we define: $\quad V(t) \equiv \mathfrak{R} e \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \tilde{V}(\omega) e^{j \omega t} d \omega$
Don't panic! You won't need to solve such integrals to understand the circuits you are building here... But is is helpful to have a
basic understanding of what it means to look at a signal in the frequency domain.

Example of physical interpretation of the transform

It is easiest to understand the Fourier transform is in the case of periodic functions. Any periodic function can be represented in terms of the Fourier series of \sin and cos functions.

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right]
$$

where:

$$
\begin{gathered}
a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos \left(n \omega_{0} t\right) d t \\
b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin \left(n \omega_{0} t\right) d t \\
T \equiv \text { period of repitition } \quad \omega_{0}=2 * \pi / T
\end{gathered}
$$

The integral form used above applies to non-periodic functions (limit as T approaches infinity).
The figure below show an example of using the series to decompose a periodic square wave with period $\mathrm{T}=2 \pi$. The square wave decomposes into the following Fourier components:

$$
f(t)=\frac{4}{\pi}\left[\frac{\sum_{n=1}^{\infty} \sin (n t)}{n}\right]
$$

Next we apply the frequency domain formalism to the defining equations for capacitors and inductors.

1) Capacitor:

$$
\begin{gathered}
\frac{d V}{d t}=\frac{I}{C} \rightarrow \frac{d}{d t} \int \tilde{V}(\omega) e^{j \omega t} d \omega=\int j \omega \tilde{V}(\omega) e^{j \omega t} d \omega=\frac{1}{C} \int \tilde{I}(\omega) e^{j \omega t} d \omega \\
\rightarrow \tilde{V}(\omega)=\tilde{I}(\omega) \frac{1}{j \omega C}
\end{gathered}
$$

$\frac{1}{j \omega C} \equiv X_{C}$ The capacitive reactance
2) Inductor: $\quad V=L \frac{d I}{d t} \rightarrow \tilde{V}(\omega)=\tilde{I}(\omega) j \omega L$ $j \omega L \equiv X_{L}$ The inductive reactance

In general we use the term impedance, \boldsymbol{Z}, to describe either resistance, reactance, or a combination of both.
Notice that in terms of specific frequencies linearity has been restored to the equations defining our voltage and current relationships. This leads to the generalized form of Ohm's Law: V = IZ or I = YZ
$\mathrm{Z} \equiv$ the (generally) frequency dependent impedance (generalization of Resistance)
$\mathrm{Y} \equiv$ the (generally) frequency dependent admittance (generalization of Conductance)

KCL and KVL are also satisfied.

From this point we will omit the " \sim " notation when referring to the Fourier amplitude. It will be obvious from the context when we are talking about the frequency dependent performance of a circuit.

AC networks may be analyzed using identical techniques to the DC case. But we will implicitly be restricted to a single frequency and the solutions for V's and I's will be the Fourier amplitudes at that frequency.

$Z_{\text {TOTAL }}=Z_{1}+Z_{2}+\ldots$

Generalized Voltage Divider

Generalized Thevenin Theorem also holds for linear circuits with reactive components

$$
V_{T h}(\omega)=V_{\text {o.c. }} @ \omega \quad Z_{T h}(\omega)=\frac{V_{\text {O.C. }}}{I_{\text {S.C. }}} @ \omega
$$

Complex notation in electronics

In a complex, linear circuit driven by a sinusoidal source all currents and voltages in the circuit will be sinusoidal. These currents and voltages will oscillate with the same frequency as the source and their magnitudes will be proportional to the magnitude of the source at all times. The phases of the currents and voltages in the circuit will likely be shifted relative to the source. This is a consequence of the reactive elements in the circuit. When using the generalized forms of Ohm's / Kirchoff's Laws phase changes for AC signals are often important.

The superposition principle allows us to solve for voltage or current for individual driving frequencies, the total voltage or current of interest is simply the superposition of all sinusoidal components of the driving source added back together with the amplitude and phase modifications caused by traversing the circuit.

First consider an AC signal driving a capacitor:

$$
\begin{gathered}
V_{\mathrm{in}}=A \cos (\omega t)=V_{C} \\
I_{C}=C \frac{d V}{d t} \rightarrow I_{C}=A \omega C \sin (\omega t)=A \omega C \cos \left(\omega t-90^{\circ}\right)
\end{gathered}
$$

The current is 90 degrees out of phase with voltage. (Lags the voltage by 90 degrees)
Since both voltage magnitudes and phases are generally affected by circuits with complex impedances, it is useful to treat V, I as complex quantities as well in order to keep track of both magnitude and phase. Physical voltages and currents are always real, the complex notation that follows is used as an aid for calculations, but only the real part of a complex voltage or current is used to represent physical quantities.

Start with a sinusoidal voltage: $\quad V=V_{0} \cos (\omega t)$ convert this into a complex expression as follows: $V=V_{0} \cos (\omega t)+j V_{0} \sin (\omega t)$

The imaginary term is has no physical significance, we add this term to allow us to express the voltage in exponential notation (via Euler's relation $V=V_{0} e^{j \omega t}$ Physical voltages are recovered by taking the real part of the complex expression. We'll see the advantage of this notation below.

Graphically the voltage can be represented on the complex plane as follows:
The magnitude vector rotates with frequency ω. It is clear that the real component (projection onto the real axis) of the voltage is our input voltage. The phase angle of the voltage, ϕ, at any time is:

$$
\phi=\omega t=\tan ^{-1}\left\{\frac{\operatorname{Im} V}{\operatorname{Re} V}\right\}
$$

Let's use this notation to analyze the low pass RC filter we saw above.

disregarding the phase we can relate the output and input magnitudes: $\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\sqrt{1+\omega^{2} R^{2} C^{2}}}=A$
for the phase relationship:

$$
V_{o}=\frac{V_{i}}{1+j \omega R C}=\frac{V_{i}}{1+\omega^{2} R^{2} C^{2}}(1-j \omega R C)=V_{i} A e^{-j \phi}
$$

where $\phi=\tan ^{-1}(-\omega R C)$ (phase angle for the divider circuit) substitute: $V_{i}=V_{0} e^{j \omega t}$

$$
V_{o}=V_{0} e^{j \omega t} A e^{-j \phi}=A V_{0} e^{j(\omega t-\omega R C)}
$$

the physical voltage $V_{o}=\operatorname{Re} V_{o}=A V_{0} \cos (\omega t-\omega R C)$

Note: the output voltage has acquired a change in amplitude and a change in phase. Both depend on the frequency.

$$
\begin{gathered}
\omega \ll \frac{1}{R C} A \rightarrow 1 \text { and } \phi \rightarrow 0 \\
\omega \gg \frac{1}{R C} A \rightarrow \frac{1}{\omega R C} \text { and } \phi \rightarrow-\pi / 2
\end{gathered}
$$

Rule of thumb: large phase shifts accompany large attenuations.

Plot of amplitude and phase shift versus frequency:

$$
\omega_{3 d B}=\frac{1}{R C} \quad f_{3 d B}=\frac{\omega_{3 d B}}{2 \pi}
$$

At the breakpoint frequency:

$$
\phi_{3 d B}=\frac{-\pi}{4}
$$

$$
\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\sqrt{2}}=.707
$$

The expression for $\frac{V_{o}}{V_{i}}$ is called the Transfer Function of the network. The Gain or Attenuation $\left|\frac{V_{o}}{V_{i}}\right|$ is conventionally expressed in units of decibels $(\mathrm{dB}) . \quad$ Gain in $\mathrm{dB} \equiv 20 \log _{10}\left(\left|\frac{V_{o}}{V_{i}}\right|\right)$

$\left\|\frac{V_{o}}{V_{i}}\right\|$	Gain (dB)
0.707	-3 dB
0.5	-6 dB
0.1	-20 dB
0.01	-40 db

In the attenuation region (beyond the 3 dB point) the output falls at $6 \mathrm{~dB} /$ octave or $20 \mathrm{~dB} /$ decade

Input and output impedances

$\mathrm{Z}_{\text {in }}$ - roughly a circuit's impedance to "ground" seen by a source driving the circuit (impedance to ground looking into circuit's input)

$$
\begin{gathered}
Z_{\text {in }}=V / I=R+1 / j \omega C \\
\rightarrow R \text { for } \omega \gg 1 / R C \\
\rightarrow \infty \text { for } \omega \ll 1 / R C
\end{gathered}
$$

$Z_{\text {out }}$ - measure of circuit's ability to drive a load (roughly impedance to "ground" looking into circuit's input). $Z_{\text {out }}$ follows from Thevenin's Theorem ($\mathrm{Z}_{\mathrm{out}}=\mathrm{Z}_{\mathrm{th}}$):

$$
\begin{array}{r}
V_{O . C .}=\frac{V_{i}}{1+j \omega R C} \\
I_{S . C .}=\frac{V_{i}}{R}
\end{array} \quad Z_{\mathrm{out}}=\frac{V_{O . C .}}{I_{S . C .}}=\frac{R}{1+j \omega R C}
$$

If $Z_{\text {in }}$ of circuit element B is infinite, then $V_{P}=V_{O C}$
If $Z_{\text {in }}$ of circuit element $B=Z_{\text {out }}$ of A, then $V_{P}=V_{o c} / 2$
In order for a circuit to drive a load without significant signal attenuation we require: $\mathrm{Z}_{\text {in }} \gg \mathrm{Z}_{\text {out }}$. In this limit circuit element B will not significantly perturb the performance of element A .

High pass filter / differentiator

$$
\begin{aligned}
& \frac{V_{o}}{V_{i}}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{1+j \omega R C} \\
& \left|\frac{V_{o}}{V_{i}}\right|=\frac{\omega R C}{\sqrt{1+\omega^{2} R^{2} C^{2}} \quad \tan ^{-1}(1 / \omega R C)} \\
& \omega \ll 1 / R C\left|\frac{V_{o}}{V_{i}}\right| \rightarrow 0 \text { and } \phi \rightarrow \pi / 2 \\
& \omega \gg 1 / R C\left|\frac{V_{o}}{V_{i}}\right| \rightarrow 1 \text { and } \phi \rightarrow 0 \\
& Z_{\text {in }}=R+1 / j \omega C \\
& Z_{\text {out }}=\frac{R}{1+j \omega R C} \text { same as low pass filter (but } V_{-} \text {Thev is different) }
\end{aligned}
$$

Band pass filters

The importance of calculating input and output impedances of the circuits above is clear when one attempts to combine a High Pass and Low Pass filter to make a bandpass circuit.

Notice this filter is composed of a low pass filter followed by a high pass filter. In general, the response of the low pass filter is modified by the addition of the second filter, because not all of the current flowing through R1 passes through C1. Instead some current is diverted through the high pass filter which acts as a load on the low pass section.

In general we cannot simply multiply the transfer functions for the low and high pass filters to get the combined transfer function. But, in the limit $Z_{\text {in }}^{\text {High Pass }} \gg Z_{\text {out }}^{\text {Low Pass }}$. we approximately recover the simple solution.
For the low pass filter section: $\quad V_{T h}=\frac{V_{i}}{1+j \omega R_{1} C_{1}} \quad Z_{T h}=\frac{R_{1}}{1+j \omega R_{1} C_{1}}=Z_{\text {out }} \quad$ Note: $\mathrm{Z}_{\text {out }}<\mathrm{R}_{1}$ for all ω.

Choose $\quad \min \left(Z_{\text {in }}^{\text {High Pass }}\right)=R_{2} \gg R_{1} \rightarrow V_{L P} \simeq \frac{V_{i}}{1+j \omega R C} \quad$ i.e. For all ω this ensures $\quad Z_{\text {in }}^{\text {High Pass }} \gg Z_{\text {out }}^{\text {Low Pass }}$
As a rule of thumb we would choose $R_{2} \geq 10 R_{1}$ (Typically we'll use a factor of 10 to satisfy a " \gg " relation.)

The high pass network responds to this input in the usual way.
$V_{o}=V_{\mathrm{LP}} \frac{j \omega R_{2} C_{2}}{1+j \text { omegaR } R_{2}} \simeq V_{i} \frac{j \omega R_{2} C_{2}}{\left(1+j \omega R_{1} C_{1}\right)\left(1+j \omega R_{2} C_{2}\right)}$ And the output is just the product of the individual transfer functions.
To design a bandpass filter follow these steps:

1) choose $R_{1} C_{1}=\frac{1}{\omega_{1}}$
2) let $R_{2} \geq 10 R_{1}$
3) choose C_{2} so that $R_{2} C_{2}=\frac{1}{\omega_{2}}$

Resonant band pass circuit

$$
\begin{aligned}
& Z_{L C}=Z_{L} \| Z_{C}=\frac{1}{\frac{1}{j \omega L}+j \omega C}=\frac{L / C}{j \omega L+1 / j \omega C} \\
& Z_{L C}=\frac{R_{0}}{j\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)} \text { where } R_{0} \equiv \sqrt{L / C} \omega_{0} \equiv \frac{1}{\sqrt{L C}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{V_{o}}{V_{i}}=\frac{Z_{L C}}{R+Z_{L C}}=\frac{1}{1+j \frac{R}{R_{0}}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}} \\
\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\sqrt{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}}} \tan (\phi)=Q\left(\frac{\omega_{0}}{\omega}-\frac{\omega}{\omega_{0}}\right) \quad \text { where } Q \equiv \frac{R}{R_{0}}
\end{gathered}
$$

For every $\omega^{\prime}<\omega_{0}$ there corresponds an $\omega^{\prime \prime}>\omega_{0}$ such that $\left|V_{o}\left(\omega^{\prime}\right) / V_{i}\left(\omega^{\prime}\right)\right|=\left|V_{o}\left(\omega^{\prime \prime}\right) / V_{i}\left(\omega^{\prime \prime}\right)\right|$. By superposition one can show that $\omega^{\prime} \omega^{\prime \prime}=\omega_{0}^{2}$
Define two 3dB points: $\left|\frac{V_{o}\left(\omega_{1}\right)}{V_{i}\left(\omega_{1}\right)}\right|=0.707=\left|\frac{V_{o}\left(\omega_{2}\right)}{V_{i}\left(\omega_{2}\right)}\right|$

The Bandwidth is defined as $B=\frac{\omega_{2}-\omega_{1}}{2 \pi}=\frac{1}{2 \pi}\left(\omega_{2}-\frac{\omega_{0}^{2}}{\omega_{2}}\right) u \operatorname{sing} \omega_{1} \omega_{2}=\omega_{0}^{2}$
at $\omega_{2} Q\left(\frac{\omega_{2}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{2}}\right)=1=\frac{Q}{\omega_{0}}\left(\omega_{2}-\frac{\omega_{0}^{2}}{\omega_{2}}\right) \rightarrow B=\frac{1}{2 \pi} \frac{\omega_{0}}{Q} \quad Q=R \sqrt{\frac{C}{L}}=\frac{R}{\omega_{0} L}$

AC Circuits

It is also possible to build a trap or notch filter:

The scope probe (a frequency independent voltage divider)
When a simple piece of coaxial cable is used to connect a circuit to an oscilloscope we are creating a low pass filter in the following manner:

The scope traces for high output impedance circuits can be very biased if there is no compensation for the low pass filter formed with the cable and scope input.

A model to a scope probe (connected to a scope) is:

Notice: a series capacitor is added at the tip of the probe and a variable capacitor is added at the base of the probe for compensation

Analysis of the probe circuit

$$
\frac{V_{o}}{V_{i}}=\frac{R_{2} \| C_{2}}{\left(R_{1} \| C_{1}\right)+\left(R_{2} \| C_{2}\right)}=\frac{\frac{R_{2}}{1+j \omega R_{2} C_{2}}}{\frac{R_{1}}{1+j \omega R_{1} C_{1}}+\frac{R_{2}}{1+j \omega R_{2} C_{2}}} \rightarrow \frac{R_{2}}{R_{1}+R_{2} C_{1}=R_{2} C_{2}}
$$

The probe serves as a frequency independent voltage divider once the compensation capacitor is adjusted to satisfy the RC equality above.

The input impedance is: $\quad Z_{\text {in }}=\frac{R_{1}}{1+j \omega R_{1} C_{1}}+\frac{R_{2}}{1+j \omega R_{2} C_{2}} \rightarrow \begin{gathered}R_{1}+R_{2} \text { as } \omega \rightarrow 0 \\ \frac{1}{j \omega}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \text { as } \omega \rightarrow \infty\end{gathered}$
Therefore, compared to the scope + cable, the addition of the scope probe

1) increases the input resistance $R_{2} \rightarrow R_{1}+R_{2} \simeq 10 R_{2}$
2) decreases the input capacitance $C_{2} \rightarrow \frac{C_{1} C_{2}}{C_{1}+C_{2}} \simeq \frac{1}{10} C_{2}$

Note: is it important to have $R_{1} C_{1}=R_{2} C_{2}$, otherwise the response will have a complicated frequency dependence and distorted signals will result.

Transformers

Start with the inductor:
Ohm's Law gives: $\quad V(t)=L \frac{d I(t)}{d t}$

Faraday's Law: change in magnetic flux induces voltage across a coil $V(t)=\frac{-d \phi}{d t}$ where $\phi=B \cdot A$ Field x Area Bfor multiple turns $\quad V(t)=-N_{\text {turns }} \frac{d \phi}{d t}=L \frac{d I(t)}{d t}$

Using magnetic flux to couple two coils:
("dots" represent in-phase points on the transformer, depends on directions of windings.)

Ideal transformer ($100 \% \phi$ coupling)

$$
\begin{gathered}
V_{2}=-N_{2} \frac{d \phi}{d t} \quad V_{1}=-N_{1} \frac{d \phi}{d t} \\
\rightarrow \frac{V_{2}}{N_{2}}=\frac{V_{1}}{N_{1}}
\end{gathered}
$$

turns
Power $=\mathrm{V}^{*} \mathrm{I}$ is constant across the ideal transformer (Energy in = Energy out), therefore $\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$

AC Circuits

Current goes as inverse of the ratio of turns.

Transforming impedances

impedance $\mathrm{Z}=\mathrm{V} / \mathrm{I}$
impedance seen by source $\quad Z_{1}=\frac{V_{1}}{I_{1}}$
load impedance $Z_{2}=\frac{V_{2}}{I_{2}}$

$V_{2}=V_{1} N_{2} / N_{1} \quad I_{2}=I_{1} N_{1} / N_{2}$
substitute $\quad Z_{2}=\frac{V_{1}}{I_{1}}\left(\frac{N_{2}}{N_{1}}\right)^{2}=Z_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2} \rightarrow Z_{1}=Z_{2}\left(\frac{N_{1}}{N_{2}}\right)^{2}$
(Load) impedance seen by source is altered by the transformer. Transformer can allow optimal impedance matching between source and load. Note: maximum power if transferred from source to load in Z_out(source) = Z_in(load).

Typical applications for transformers:

1) change V / I levels from on circuit to another
2) impedance matching

3) isolation, i.e. Change of ground reference

Transmission lines

So far we have treated wires and cables as simple, non-interfering elements that "instantly" transmit currents and voltages without significant changes in magnitude. A transmission line is a pair of conductors that carries a signal between two points in a finite time.

A transmission line of length \boldsymbol{l} has a transmission velocity \boldsymbol{u} for signals moving in the line. For low frequency signals $\omega \ll u / l$ the voltage is the same on both sides of the cable and we can safely approximate the line as in infinite speed wire. For high frequency $\omega>u / l$ and the voltages will be different on each end of the cable. In this case there will be measurable effects due to the length of the cable.
coxial cable
A two conductor cable can be modeled as in the picture below. All conductors possess a small amount of self inductance per unit length. In the cable there is also stray capacitance between the shield and conductor. In this model we will neglect the small series resistance of the conductor. The conductor can be seen as a large number of small series inductors and a small parallel capacitors. This model is called a lumped constant LC circuit.

Applying KVL and KCL:
start with $\quad L \frac{d i_{n}}{d t}=\frac{1}{C} q_{n-1}-\frac{1}{C} q_{n} \quad$ then differentiate both sides: $\quad L \frac{d^{2} i_{n}}{d t^{2}}=\frac{1}{C} \frac{d q_{n-1}}{d t}-\frac{1}{C} \frac{d q_{n}}{d t}=\frac{1}{C}\left(i_{n-1}-i_{n}\right)-\frac{1}{C}\left(i_{n}-i_{n+1}\right)$
replacing L and C with inductance/unit length $l=L / \Delta x$, capacitance/unit length $c=C / \Delta x$

$$
\frac{d^{2} i_{n}}{d t^{2}}=\frac{1}{l c}\left(\frac{1}{\Delta x}\left(\frac{\left(i_{n+1}-i_{n}\right)}{\Delta x}-\frac{\left(i_{n}-i_{n-1}\right)}{\Delta x}\right)\right)
$$

in the limit small Δx we can write: $\frac{\partial^{2} i}{\partial t^{2}}=\frac{1}{l c} \frac{\partial^{2} i}{\partial x^{2}}$
this is an example of the wave equation with general solution: $i(x, t)=i_{1}(x-u t)+i_{2}(x+u t)$ where \boldsymbol{u} is the velocity $u=1 / \sqrt{l c}$ ($\sim 2 / 3 c$ for typical cables)
similarly the voltage solution is: $v(x, t)=v_{1}(x-u t)+v_{2}(x+u t)$
in each case the two terms represent signals moving forwards and backwards, respectively.
For a sinusoidal waveform, the forward moving signal can be expressed as: $\begin{gathered}v(x-u t)=V_{0} e^{j(x-u t)} \\ i(x-u t)=I_{0} e^{j(x-u t)}\end{gathered}$
The cable impedance can be found by rewriting $L \frac{d i_{n}}{d t}=\frac{1}{C} q_{n-1}-\frac{1}{C} q_{n}$ after substituting inductance and capacitance per unit length: $\frac{\partial i_{n}}{\partial t}=-\frac{1}{l} \frac{\partial v}{\partial x}$
then substituting our solutions for v, i, u yields: $V_{0}=\sqrt{\frac{l}{c}} I_{0}$ therefore $Z=\sqrt{\frac{l}{c}}$

The impedance of the cable only depends on the inductance and capacitance per unit length. It is purely resistive and does not depend on the length of the cable. A transmission can be treated as a device of fixed impedance regardless of length.

Impedances for common cables	
RG-58 coax	50 Ohms
Coax for TV signals	75 Ohms
Flat antenna wire	300 Ohms

Consider a shorted transmission line. A pulse from the voltage source causes a wave to propagates from V_{A} to V_{B} in time $T . V_{B}$ is necessarily fixed to 0 V . A wave of opposite phase is created at the short. This appears as a reflection that propagates backward and cancels the signal \qquad

Next consider a line terminated with a resistive load. If $Z_{\text {load }} \gg Z_{0}$, the boundary condition at point B is $\mathrm{I}_{\mathrm{B}}=0$. This causes a non-inverted reflection of the signal with amplitude equal to the signal applied at A.

In general the magnitude and sign of the reflected signal is given by:
 $\frac{v_{\text {reflected }}}{v_{\text {incident }}}=\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}}$

Consider a 50 ns long transmission line with a characteristic impedance Z_{0} of 50 Ohms . We can define a short pulse as a pulse whose duration is $\ll 50 \mathrm{~ns}$ and a long pulse as one whose duration is $\gg 50 \mathrm{~ns}$

Response to a short pulse for $\mathrm{R}_{\text {term }} \gg \mathrm{Z}_{0}$:

5.0 V					
4.0 V			,	-	
$3.5 \mathrm{~V}-$					
$3.0 \mathrm{~V}-$					
$2.5 \mathrm{~V}-$					
$2.0 \mathrm{~V}-$					
$1.5 \mathrm{~V}-$					
0.5V-				!	
0.0v-			\{		
	40 ns	80	120 ns	160 ns	200
- Ons	40 ns	80 ns	120 ns	160 ns	200

Response to a short pulse for $\mathrm{R}_{\text {term }} \ll \mathrm{Z}_{0}$:

Response to a long pulse for $\mathrm{R}_{\mathrm{term}} \gg \mathrm{Z}_{0}$

Effect of terminating with a capacitor

Response to a long pulse for $\mathrm{R}_{\text {term }} \ll \mathrm{Z}_{0}$

$\left|Z_{\text {load }}\right|=|1 / \omega c|$

Charging an unterminated line, RC time constant with steps.

