
Phys 315/519 Digital

Digital Electronics

In digital circuits only two values of Vin or Vout are considered, Low (L) or High (H). The two
values correspond to the logical states True (T) or False (F).

CMOS AND circuit
(L)ow voltage = VSS

(H)igh voltage = VDD

A B Y

L L L

L H L

H

H

L

H

L

H

Typ. CMOS output stage

If Vin=5V:
VGS1=0, FET1 off
VGS2=5V, FET2 on
Vout = 0V

If Vin=0V:
VGS1=-5V, FET1 on
VGS2=0V, FET2 off
Vout = 5V

ECL OR circuit

A B Y

L L L

L H H

H L H

H H H

Y=H if A=H or B=H

Standard convention is that L=FALSE=0 and H=TRUE=1 respectively. Logically the above
circuits function as logical AND and OR gates respectively.

1

Phys 315/519 Digital

Combinational Logic Gates
OR Gate AND Gate

A B Y

F F F

T F T

F T T

T T T

A B Y

F F F

T F F

F T F

T T T

Some Boolean Identities

A+B+C = (A+B)+C = A+(B+C)

A+B = B+A

A+A = A

A+T = T

A+F = A

ABC = (AB)C = A(BC)

AB = BA

AA = A

AT = A

AF = F

A(B+C) = AB + AC

The first identity indicates how a logic gate having more than two inputs should behave, eg:

2

Phys 315/519 Digital

NOT or INVERT Gate Truth Table Boolean Identities

A Y

F T

T F

A =A
AA=T
A A=F

AAB=AB

Additional gates formed by combining NOT with AND and OR

NAND NOR

A B Y

F F T

T F T

F T T

T T F

A B Y

F F T

T F F

F T F

T T F

De Morgan's Theorem
If we had identified L voltage with TRUE and H with FALSE, then the NAND and NOR circuits
would actually have implemented the OR and AND functions respectively. Interchanging the
assignments L=F, H=T to L=T, H=F is equivalent to applying the logical complement to all
entries of a truth table...

Note: a circle indicates inversion of a logic level

3

Phys 315/519 Digital

Implementing Logic Equations with Gates

Take the assignment between voltage levels and logic quantities to be:
L = F = 0, H = T = 1
Then De Morgan's theorem will be used to treat signals that are “active low.”

General problem: Given a truth table, find some combination of logic gates that satisfy the table.
The first step is to find a set of logic equations to solve the truth table. There are two ways to do
this: (1) by inspection, a.k.a. 'divine intuition', (2) by Karnaugh Map. Then algebraic
manipulation can be used to reduce the expression.

Example: XOR (exclusive OR) gate

A B Y

0 0 0

1 0 1

0 1 1

1 1 0

By inspection of the table and using De Morgan's theorem
Y=ABA⋅B=ABAB

=A AB BABAB

K-Map:

⇒Y=ABAB

Two implementations using NAND gates Y=ABAB

Using De Morgan's Laws:

Y=AB⋅AB⇒Y=AB⋅AB

Another solution using only 4 gates:

Y=ABA⋅B=ABAB
=A⋅A⋅BB A⋅B
=A⋅A⋅B⋅B A⋅B

Note: all logic functions can be built up from NAND gates alone (or from NOR gates).

4

Phys 315/519 Digital

Top solution is 5 layers deep, bottom only uses 3 layers of logic. Thus bottom circuit is faster,
because fewer propagation delays are encountered.

5

Phys 315/519 Digital

6

Phys 315/519 Digital

Open collector and Tri-State outputs

In addition to LOW and HIGH output voltage levels, some gates have a third, High-Z, output
state. This allows many outputs to be connected together on a single wire (or bus). Two
varieties re commonly used:

1) Open Collector
Q=A⋅G1B⋅G2C⋅G3

Disadvantages:
1) not an active pull-up trise~RpC
2) inverted logic must be used

2) Tri-State

When both FETs are off (G=0) output is in High-Z
state

7

Phys 315/519 Digital

8

LSB

MSB

Phys 315/519 Digital

9

Phys 315/519 Digital

10

Phys 315/519 Digital

11

Phys 315/519 Digital

12

Phys 315/519 Digital

13

Phys 315/519 Digital

14

Phys 315/519 Digital

Multiplexers and Decoders
4-to-1 multiplexer (fan-in)

Address A[1:0] selects output from D[3:0]

Abbreviated symbol

2-to-4 decoder (fan-out)

Address A[1:0] clears one bit from Q[3:0]

Both can be used to implement arbitrary functions of two boolean variables (bits)
Often these devices have enable inputs for tristate outputs.

15

A0 A1 Q

0 0 D0

0 1 D1

1 0 D2

1 1 D3

A0 A1 Q0 Q1 Q2 Q3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Phys 315/519 Digital

16

Phys 315/519 Digital

Karnaugh Maps

The Karnaugh map or K-map offers a convenient way to visualize logic equations from a truth
table. Consider the following logic problem:

We have a chocolate-covered coffee bean machine, that
returns a bean for a 20 cent fee. The machine accepts
only quarters and dimes. To make matters simple, we'll
ignore the job of making change. To enter the fee,
assume the machine has a drawer w/ three depressions,
one for a quarter and two for dimes (like many coin-op
washing machines).

Obviously, a single quarter or two dimes will satisfy the
fee requirement to get a bean. The truth table (for all
possible input combinations) is:

K-map for bean machine:
(note: grey code must used in all row/ columns)

17

Q D1 D2 bean

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Q \ D1D2 00 01 11 10

0 0 0 1 0

1 1 1 1 1 =Q

=D1⋅D2

Therefore: bean=QD1⋅D2

Phys 315/519 Digital

A slightly more detailed example.
Now we have a vending machine that takes up to 6 coins (2Q, 2D, 2N). Candy may be returned
if at least 40 cents is input, gum may be returned if at least 30 cents is input. Let's look at the
Kmap for candy:

candy=Q1⋅Q2Q1Q2⋅D1⋅D2Q1Q2⋅D1D2⋅N1N2

18

Phys 315/519 Digital

More K-Map Examples:

19

Soultion 1:
Y=AB⋅CC⋅D A⋅BC⋅AB

Alternate solution (choose
large region and remove
“hole”)

Y=ABC⋅D⋅A⋅B⋅C 
C⋅A⋅B

Can also group 0's and invert to get solution: Y=C⋅A

Grouping largest possible regions always simplifies the problem

Phys 315/519 Digital

20

Phys 315/519 Digital

21

Phys 315/519 Digital

22

R

S

Phys 315/519 Digital

23

Phys 315/519 Digital

24

Phys 315/519 Digital

25

Phys 315/519 Digital

26

Phys 315/519 Digital

27

Phys 315/519 Digital

28

Phys 315/519 Digital

29

Phys 315/519 Digital

30

Phys 315/519 Digital

31

Phys 315/519 Digital

32

Phys 315/519 Digital

33

Phys 315/519 Digital

34

Phys 315/519 Digital

35

Phys 315/519 Digital

36

Phys 315/519 Digital

We can think of a state machine as somewhat like counter with 2^n possible values, but state
machine can progress in a more general way (not limitied to monotonic progressions).

Example: washing machine

First detailed example: 2-bit gray code counter

Count progression is: 00, 01, 11, 10, 00, ... These represent out states and their relative ordering.

To construct this device: write a truth table for
input/outputs: inputs=current stare info, outputs =
next state info.

Devise necessary logic from the T Table to generate
D's from Q's:

D0=Q1Q0Q1Q0=Q1⋅Q0Q0=Q1

D1=Q1Q0Q1Q0=Q0⋅Q1Q1=Q0

37

Phys 315/519 Digital

38

Phys 315/519 Digital

39

Phys 315/519 Digital

40

Phys 315/519 Digital

41

Phys 315/519 Digital

42

Phys 315/519 Digital

43

Phys 315/519 Digital

44

Phys 315/519 Digital

45

Phys 315/519 Digital

46

Phys 315/519 Digital

47

Phys 315/519 Digital

48

Phys 315/519 Digital

49

Phys 315/519 Digital

50

Phys 315/519 Digital

51

Phys 315/519 Digital

52

Phys 315/519 Digital

53

Phys 315/519 Digital

54

Phys 315/519 Digital

55

Phys 315/519 Digital

56

Phys 315/519 Digital

57

