
Phys 315/519 OPAMPs

OPAMPs  I: The Ideal Case

The basic composition of an  operational amplifier (OPAMP) includes a high gain
differential amplifier, followed by a second high gain amplifier, followed by a unity gain,
low impedance,  output stage.  A simplified model for the LF411 used in class is shown
below:

(+) = non-inverting input
(-) = inverting input

Vout has the same sign 
as V(+) - V(-)

(the capacitor limits the gain
at high frequency, more on
this later)

To do calculations, we will use a small signal equivalent circuit for the OPAMP1.

Universal assumptions for OPAMPs:
1. Unloaded o=AD where D=(+)­(-)

A is large, typically 105

2. rin is large ∞
3. ro is small 0

Note: there are no explicit resistors from inputs to ground or power supplies.  This is
consistent w/ ignoring input bias currents and having a current source in the Diff. Amp.

1The small signal analysis will avoid imperfections of a D.C. nature, such as input bias
current, input voltage offset, and bias current offset.  We'll treat these later.
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Negative feedback:  Assume that D=(+)­(-)≠0 .  The idea is to take a fraction B of
o and add it back into the input in order to cancel D .  There are two topologies to

consider:

Voltage Shunt feedback

We will derive the “Golden Rules” from our
above assumptions

1. D≈0
2.  inputs draw no current, D≃0
3. Z out≃0

Proof of assertion (1) : D≈0

Draw the input-output circuit: 

By superposition:

D=in

r in∥Z fro
Z 1[r in∥Z fro]

AD
r in∥Z 1

roZ f r in∥Z 1

Use the approximations: r in≫∣Z 1∣,∣Z f∣ and ro≪∣Z f∣

D≃in

Z f

Z 1Z f
AD

Z 1

Z fZ 1

⇒D=
­in 1­B
BA­1

where B=
Z 1

Z 1Z f
is called the feedback ratio

and D0 as long as BA >> 1

Proof of assertion (2): no current into inputs follows from (1) since D=
D
r in

0
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Proof of assertion (3): Z out≃0 Use Thevenin's theorem

open circuit: o
o.c.=AD=­in

A1­B
BA­1

short circuit: o
s.c.= 1

ro
AD

s.c. for output shorted to ground D=­1­Bin

⇒Z out=
o

o.c.

o
s.c. =

ro

BA­1 therefore Z out≃0 for BA≫1

As a corollary to assertion (1) it is easy to see that the gain for the entire circuit, including
feedback (the “closed loop gain”) is:

G=
o

in
=
Ad
in

=
­A1­B
BA­1

­
Z f

Z 1
for BA≫1

Notice that G is essentially independent of the details of A, the open loop gain.  Even if A
is non-linear for large signals, e.g. “Barn roof distortion”, G is still constant.  All that
matters is that BA>>1.  Through use of negative feedback we are “trading” extremely
large gain A for moderate gain ~Zf/Zin with excellent linearity.

Voltage Series feedback

We will again derive the “Golden Rules”
1. D≈0
2.  inputs draw no current, D≃0
3. Z out≃0

Again
proceeding by superposition:

(-)=in­D=in

Z 1∥Z fro
r in[Z 1∥Z fro]

AD
r in∥Z 1

Z fror in∥Z 1
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Proof of assertion (1): D≈0

Use the approximations: r in≫∣Z 1∣,∣Z f∣ and ro≪∣Z f∣

in­D≃AD
Z 1

Z fZ 1
⇒D=

in

1BA so for BA >> 1 D≃0

Proof of assertion (2): D≃0

i in=
D
r in

=
in

1BAr in
0 for BA≫1 rin is effectively “boot strapped” so that its

effective impedance r in
eff=r in 1BA≫r in

Proof of assertion (3): Z out≃0 by Thevenin's theorem

open circuit: o
o.c.=AD=­in

A
1BA

short circuit: no feedback to input signal, so
D=in⇒o

s.c.=
Ain

ro

⇒Z out=
ro

1BA
0 for BA≫1

Closed loop gain in this configuration is:

G=
o
in

=
Ad
in

= A
1BA

 1
B
=1

Z f

Z 1

We have seen that the use of negative feedback improved the desirable characteristics of
an amplifier in several ways:

1) increases input impedance
2) reduces output impedance
3) provides a more linear response

The preceding analysis was for small signals, but it still holds if we can neglect the small
imperfections of the OPAMP (small DC bias currents into the OPAMP, and small voltage
offsets at the inputs).  
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Next we turn to an analysis of OPAMP circuits using the two most important golden rules
(valid when negative feedback is used):

I) The opamp's output attempts to do whatever is needed to make the voltage
differences between the inputs equal zero (i.e. (-)=(+) )

II)The inputs to the opamp draw no current

We will use these simple rules to derive the closed circuit gains for the shunt and series
circuits above.  We will now drop the small signal notation unless it is explicitly required.

Voltage shunt feedback:

By rule (I): V (-)=V (+)=0

By rule (II): I 1=
V in­0
Z 1

= I f=
0­V out

Z f

Therefore V out=­V in

Z f

Z 1

Voltage series feedback:

By rule (I): V (-)=V (+)=V in

By rule (II): I 1=
V in

Z 1
= I f=

V out­V in

Z f

V in 1
Z 1
 1
Z f =V out

Z f

therefore V out=V in1 Z f

Z 1 
Notice: these solutions are general.  As long as there is a closed circuit providing negative
feedback, the Golden Rules will apply.  Subject to this condition arbitrary circuits can be
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placed into the feedback loop.
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Some applications of  OPAMPs

Analog adder

Rule 1) V -=0
I 1=V 1/R1 and I 2=V 2/R2

Rule 2) I f= I 1 I 2

V out=V -­ I f R f=­[V 1

R f
R1

V 2

R f
R2 ]

Adds, but also inverts

Differential Amplifier

Rule 1)
V -=V +=V 2

R2

R1R2

I 1=
1
R3V 1­V 2

R2

R1R2
Rule 2) I 1= I 4≡ I

V out=V -­ I R4=V 2

R2

R1R21 R4

R3­ R4

R3
V 1

= 1
2 [ R2

R1R2
1

R4

R3

R4

R3 ]
GDIF

V DIF

[ R2

R1R2
1

R4

R3
­
R4

R3 ]
GCM

V CM

Setting [ R2

R1R2
1

R4

R3
=
R4

R3 ]
i.e. R2/R1=R4/R3

gives GCM=0 and GDIF=
R2

R1

this requires precise resistors, difficult to
achieve in practice
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Logarithmic amplifier
Used to “compress” a signal
that varies over many orders
of magnitude into a few volt
range.

To analyze this circuit:
1) Don't panic

2) Find Vout, first find VA, VB

V A=­V BE
1≃­V T ln

I in

I S
1 from Ebers Moll Eqn.

V B=­V BE
1V BE

2=­V T ln[ I in

I S
1

I S
2

I 0 ]=­V T ln[ I in

I 0 ]
Assuming Q1 and Q2 are identical, IS cancels...

3) The gain for the second OPAMP is 1
R3

R2

then V out=­V T ln I in

I 0 [1 R3

R2 ]∝lnV in

Note: since V T=kT /q the gain is temperature dependent.  A solution is to put a

temperature variable resistor in series w/ R2  dRSdT = RS .
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OPAMPS II: Imperfections of OPAMPs

Three D.C. imperfections are common to OPAMPs
• Offset voltage VOS: Vout = A(VD-VOS)
• Input bias current Ib: Ib = 1/2(I1+I2)
• Bias current offset IOS: IOS = (I1-I2)

For the configuration shown:
define RB=R f∥R' f
V D=V (+)­V (-)=­I 1R1­BV out­ I 2RBR2

V o=
1
B
[V OS­ I 1R1 I 2RBR2] for AB≫1

= 1
B
[V OS I bRBR2­R1­

1
2
I OS R1R2RB]

To measure VOS: Choose RBR2≃R1 and R1R2RB as small as possible Also
choose 1/B ~ 1000 so VOS = BVout  

To measure Ib, IOS: Choose R1≃R2 so large that I n Rn≫V OS . (usually 10Meg is good
enough for a bipolar OPAMP).  Also make RB≪10M  for simplicity. Then
i) I OS=­2BV out /R1R2

ii) Short across R1, then I b=BV out
1
2
I OS R2/R2
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dV o

dt
≃G

I D
CM

≃
I D
CC

=V (+)­V (-)
gm
CC

Slew rate ≡max∣dV o

dt ∣= I s
CC

Max rate at which output voltage changes

In order to achieve 
dV o

dt
≃ Slew Rate there must be a large difference voltage, VDIF.

This is not the region in which the amplifier operates when negative feedback is used.
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OPAMPS III: Comparators, Oscillators, etc.

The comparator is a non-linear circuit similar to an OPAMP: Large gain, ~high input Z,
differential amp front end.

Differences: 
• No “Miller Compensation” capacitor, this means large gain even at high frequency.  
• This device is not meant to be used with negative feedback since it would be unstable.
• Output impedance not necessarily small, sometime “open collector” out (a current

source). 

V+ > V_ Vo = VH high level  (usually VH, VL

V+ < V_ Vo = VL low level     are power supply “rails”)

Comparators produce a binary output (VH or VL) and are used to interface analog signals
(eg from a sensor) to a digital system (like a computer).

A simple circuit using the 311.

Multiple transitions can be cured by hysteresis --- making the
threshold dependent on Vout Suppose Vin<VThr and increasing 

“True threshold” = V +
*=V Thr 1­BVBo where B=

R2

R1R2

Suppose initially Vin<VThr and is increasing: V o=V H and V +
*=V ThrBV H When Vin

exceeds V +
* , V oV L and V in­V +

* is now a larger difference than previously (ie
positive feedback).  Output will not switch back to V o=V H until V inV ThrBV L

(which is less than V ThrBV H )

Make B(VH-VL) larger than noise to avoid multiple transitions
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Relaxation oscillator – square wave output

Assume: VH = +VCC = +15V
VL = -VCC = -15V

Suppose at t=0, V-=Vcap=0, Vo=+15V
Capacitor will charge towards +VCC w/ time constant RC.  When 
V->BVCC, Vo goes to -VCC and the capacitor charges towards -VCC

w/ time constant RC.  When V-<BVCC, Vo goes to +VCC and the

cycle repeats. B=
R2

R1R2

The half period T1/2 is given by :
V CC 1B1­e

T 1/2/RC=2BV CC

1­B
1B

=eT 1/2/RC

Full period = 2 T1/2 , T=2RC ln  1B
1­B



For a 311 the square wave is slightly asymmetric.  Zout=pullup R when VO=VH and Zout~0
when Vo=VL.  This it spends more time at Vo=VH
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One-shot or Monostable
The relaxation oscillator was astable (no stable state).  The circuit below has one stable
state to which it returns after spending a brief time in a quasi-stable state.

VCC=-VEE=15V

Initially take VO=VCC then
V _=V D≃0.6V D1 , D2 on 

V Thr=V +­V D=
V CC­V D1R3/R2

1R3/R1R3/R2

When ­inV Thr then V OV EE D1,D2 shutoff, V_ changes towards VEE and

V +=
R2

R2R3
V EE=BV EE .  When V_<V+ then V OV CC and the device returns to its

initial state.
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