Part 1

Recall:

- two types of charge carriers in semiconductors: electrons \& holes
- two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

i) arrow indicates direction of current flow
ii) B-C, B-E have diode drops. But transistors are NOT equivalent to two back-to-back diodes. (B-C, B-E junctions are also asymmetric, larger drop across B-C junction)

Notation:
i) $\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{E}}=$ voltage at base, collector, emitter w.r.t. ground
ii) $\mathrm{V}_{\mathrm{BE}}=$ voltage at base w.r.t emitter
iii) $\mathrm{V}_{\mathrm{CE}}=$ voltage at collector w.r.t emitter
iv) V_{CC} - usually the positive power supply voltage
v) V_{EE} - usually the negative power supply voltage

If $V_{C E}>V_{\text {BE }}$
B-E junction is forward biased therefore current should flow...
C-E junction is reversed biased. If C-E formed a normal diode, no current would flow through the collector. The difference is that the base region is very thin and a strong \boldsymbol{E} field exists at the C-B junction which "collects" any electrons that come nearby.

1) Electrons are injected into base from emitter
(from the diode equation $I_{E} \sim I_{0} \exp ^{q V_{B E} / k T}$)
2) e's arriving at the base have two possibilities
i) recombine with holes and flow out of the base
ii) if an electron drifts near the C-B junction it will be sucked across the junction due to the large \boldsymbol{E} field

If I_{E} is large enough (ii) usually dominates. A 'logjam' of electrons looking for holes in the thin base material make the electrons likely to jump into the collector.
In this case $I_{C} \sim \alpha I_{E}$ where $\alpha \leq 1$

Early transistors had $\alpha \sim 0.9$ today typical transistors have values $\alpha \sim 0.99$ More convenient notation uses the parameter β to distinguish transistors.
$I_{C}=\beta I_{B}$ And typical values of β range from $\sim 50-100$.
$\beta \equiv \frac{I_{C}}{I_{B}}$ is the current gain of the transistor at (DC).
A small base current cause a much larger current to flow through the collector/emitter.

$$
\alpha=\frac{\beta}{1+\beta}
$$

note: $\beta=100 \rightarrow \alpha=.99$

$$
\beta=50 \rightarrow \alpha=.98
$$

β is a much more sensitive measure of transistor properties

Common Emitter Configuration

So long as $\mathrm{V}_{\mathrm{CE}}>\sim 0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}$ and I_{C} depend only weakly on V_{CE}
i.e. $\quad V_{B E} \sim f_{1}{ }^{\prime}\left(I_{B}\right) \sim$ fairly constant

$$
I_{C} \sim f_{2}^{\prime}\left(I_{B}\right)
$$

Three regions of operation

1) Active Region
$\mathrm{V}_{\mathrm{BE}} \sim 0.6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CE}}>\sim \mathrm{V}_{\mathrm{BE}}\left(\mathrm{I}_{\mathrm{C}}>0\right)$
β defined as: $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ is large ~ 100
This mode is used in linear amplifiers
2) Saturation
$\mathrm{V}_{\mathrm{BE}} \sim 0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CE}}<\mathrm{V}_{\mathrm{BE}}$
Still have $\mathrm{I}_{\mathrm{C}}>0$, but β is small ~ 10
Transistor is used as a switch in this mode
3) Cutoff
$\mathrm{V}_{\mathrm{BE}}<\sim 0.5 \mathrm{~V}$ therefore $\mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}=0$
Transistor does not conduct
Comments:

- for pnp reverse the above signs and inequalities
- I_{C} is never <0 in normal operation (large reverse voltages can cause breakdown and frequently ruin a transistor)

Simple model of transistor in active region

$\mathrm{V}_{\mathrm{CE}}>\mathrm{V}_{\mathrm{BE}}$ (or for pnp type $\mathrm{V}_{\mathrm{CE}}<\mathrm{V}_{\mathrm{BE}}$)

1) 'current gain' picture $I_{C} / I_{B}=\beta(\sim 100)$
since $I_{E}=I_{B}+I_{C}, \quad I_{C}=\frac{\beta}{(\beta+1)} I_{E} \sim I_{E}$
2) Assume simple V-I diode characteristics for B-E junction

or for pnp

$$
\begin{gathered}
I_{E}>0 \leftarrow \rightarrow V_{B E} \sim-0.6 \mathrm{~V} \\
I_{E}=0 \text { if } V_{B E}>-0.6 \mathrm{~V}
\end{gathered}
$$

Emitter follower (aka common collector)

Used to buffer a higher output impedance source to drive a lower input impedance load.

$$
V_{L}=V_{S} \frac{R_{L}}{R_{L}+R_{S}} \ll V_{S} \text { if } R_{L} \ll R_{S}
$$

"Black Box" emitter follower

$$
V_{L}=\left(\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{S}}\right)\left(\frac{R_{L}}{R_{L}+R_{S}}\right) V_{S} \sim V_{S}
$$

$$
\text { if } R_{\text {in }} \gg R_{S} \text { and } R_{\text {out }} \ll R_{L}
$$

Constructing an emitter follower

RB, C are optional (they spoil Q of resonant circuits formed by stray L,C in circuit. (greater importance at high frequencies)

Emitter follower in cutoff region

Emitter follower at saturation

If $V_{\text {in }}>V_{C}$, then the $V_{C B}$ junction is forward biased

$$
\begin{gathered}
I_{\text {in }} \sim \frac{V_{\text {in }}-V_{C C}-0.6 \mathrm{~V}}{R_{B}} \\
V_{B} \sim V_{C C}+0.6 \mathrm{~V} \\
V_{C E}^{\text {sat }} \text { typically } \sim 0.2 \mathrm{~V}
\end{gathered}
$$

Analysis of input and output impedance of the emitter follower

$$
V_{\text {in }}-I_{B} R_{B}-V_{B E}=V_{\text {out }}
$$

$$
V_{\mathrm{in}}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=V_{E E}
$$

nonlinear relationship for $I_{E}, V_{B E}\left(I_{E} \propto e^{q V_{B E} / k T}\right)$ makes it difficult to define impedance by using V/I

Express V,I as a time invariant part + a time varying part

$$
\begin{gathered}
V \rightarrow V_{D C}+\Delta V(t) \equiv V_{D C}+v \\
I \rightarrow I_{D C}+\Delta I(t) \equiv I_{D C}+\iota
\end{gathered}
$$

then define $Z=\frac{\Delta V}{\Delta I}=\frac{v}{\iota}$ (for AC signals)
In the simple transistor model

Note: we now adopt a notation where lower case letters will generally refer to small signal equivalents in a circuit analysis

Small signal equivalent analysis of the emitter follower

- power supplies are replaced by "AC shorts" to ground
- Small signal current gain $h_{F E} \equiv \iota_{c} / \iota_{b}$
- $h_{F E}$ need not equal β, but in practice they tend to agree $\mathrm{w} / \mathrm{in} \sim 20 \%$ and are both large ($\gg 1$). We'll generally assume $\beta \sim h_{F E}$

Input impedance $Z_{\mathrm{in}}=\frac{\nu_{\mathrm{in}}}{\iota_{b}}=\frac{\nu_{\text {out }}+\iota_{b} R_{B}}{\iota_{b}}$ then use $\iota_{e}=(\beta+1) \iota_{b}$

$$
\left.Z_{\mathrm{in}}=R_{B}+(\beta+1) R_{E} \simeq(\beta+1) R_{E} \quad \text { (usually } \mathrm{R}_{\mathrm{B}} \ll \mathrm{R}_{\mathrm{E}}\right)
$$

This is the input impedance "looking into the base" note: $Z_{\text {in }} \gg R_{B}$
To find the output impedance, we replace the circuit by its small signal Thevenin equivalent.

finding the open circuit output:

$$
\begin{aligned}
v_{\text {out }}^{O . C .} & =v_{\text {in }}-\iota_{b} R_{B}=v_{\text {in }}\left(1-R_{B} / Z_{\text {in }}\right) \\
& =v_{\text {in }} \frac{(\beta+1) R_{E}}{R_{B}+(\beta+1) R_{E}} \simeq v_{\text {in }}
\end{aligned}
$$

finding the short circuit current:

$$
\begin{aligned}
& \iota_{\text {out }}^{\text {S.C. }}=(\beta+1) \iota_{b}^{S . C .}=(\beta+1) v_{\text {in }} / R_{B} \\
& \quad Z_{\text {out }}=\frac{v_{\text {out }}^{\text {O.C. }}}{L_{\text {out }}^{S . C .}}=\frac{(\beta+1) R_{E}}{R_{B}+(\beta+1) R_{E}} \frac{R_{B}}{(\beta+1)} \\
& =\frac{\frac{R_{B}}{(\beta+1)} R_{E}}{\frac{R_{B}}{(\beta+1)}+R_{E}} \simeq \frac{R_{B}}{(\beta+1)} \quad \text { note: } \quad Z_{\text {out }} \ll R_{B}
\end{aligned}
$$

What is R_{B} in this case?

Limitations of the emitter follower

Consider a typical application: driving a 50 Ohm terminated coaxial cable. Assume $\Delta t \ll R C$ so that we are in the DC blocking regime for the high pass filter.

For the transistor to remain in the active region we need $\mathrm{I}_{\mathrm{E}}>0$

- positive input increases I_{E}, no problems as long as $\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{CC}}$
- negative input pulses will decrease I_{E} and may cause cutoff

KVL:

$$
\begin{gathered}
V_{\text {in }}-V_{B E}-I_{S} R_{E}=V_{S S} \\
V_{\text {in }}-V_{B E}-V_{\text {cap }}-I_{L} R_{L}=0
\end{gathered}
$$

assume $\Delta V_{B E}=0$ and the capacitor is a short for our signal frequencies
small signal form of KVL: $\begin{aligned} & v_{\text {in }}-\iota_{s} R_{E}=0 \\ & v_{\text {in }}-\iota_{L} R_{L}=0\end{aligned}$ then using $\iota_{e}=\iota_{s}+\iota_{\text {cap }} \rightarrow \iota_{e}=\frac{v_{\text {in }}}{R_{E} \| R_{L}}$
The transistor "cutsoff" when $\iota_{e}=-I_{E}^{\text {D.C. }}$ or (equivalently) when $v_{\text {in }}<-I_{E}^{\text {D.C. }}\left(R_{E} \| R_{L}\right)$

Note: The cutoff voltage depends strongly on the load if $\mathbf{R}_{L}<\sim \mathbf{R}_{E}$

The problem of reproducing negative pulses can solved by using a pnp transistor

In this case a negative pulse increase I_{E}, keeping the transistor active (but a positive pulse can cause it to cutoff in the same way illustrated above)

The general solution for bidirectional pulses is to use a complementary follower

In this design: $\mathrm{D}_{1}, \mathrm{D}_{2}$ keep $\mathrm{V}_{\mathrm{BE}} \sim \pm 0.6 \mathrm{~V}$ (the downside is that $\mathrm{Z}_{\text {in }} \sim \mathrm{R} / 2$!)

Strategy for biasing an emitter follower

1) choose quiescent current I_{Q}, where I_{Q} is the current drawn by the largest pulse which would tend to shut off the transistor.

$$
I_{Q} \geq \frac{\max \left|v_{\mathrm{in}}\right|}{R_{E}| | R_{L}} \simeq \frac{\max \left|v_{\mathrm{in}}\right|}{R_{L}} \quad \text { (if } v_{\mathrm{in}} \text { is symmetric) }
$$

2) choose R_{E} (assuming AC coupled load otherwise load would affect I_{Q})

$$
\begin{gathered}
V_{B}-0.6 \mathrm{~V}-I_{Q} R_{E}=V E E \\
R_{E}=\frac{V_{B}-0.6 \mathrm{~V}-I_{Q} R_{E}}{I_{Q}}
\end{gathered}
$$

For maximum symmetric voltage swing at output, V_{B} is set to \sim midpoint
 between the two power supplies $V_{B} \sim \frac{1}{2}\left(V_{C C}+V_{E E}\right)$

$$
R_{E}=\frac{1}{2} \frac{V_{C C}-V_{E E}-1.2 \mathrm{~V}}{I_{Q}}
$$

3) Choose the appropriate resistor divider to set the base voltage
$V_{B} \sim \frac{1}{2}\left(V_{C C}+V_{E E}\right)$ for our example $R_{1} \simeq R_{2}$ and $\frac{V_{C C}-V_{E E}}{R_{1}+R_{2}}>\sim 0.1 I_{Q}$ this is the current through the divider
Solving for R1: $\quad R_{1} \simeq \frac{V_{C C}-V_{E E}}{I_{Q}}$

Note: $\beta \sim 100$ therefore above relation guarantees that $I_{\text {divider }} \sim 10 \times I_{B} \quad$ so the base voltage is roughly independent of the base current
4) Finally choose the appropriate AC coupling capacitors for the input signal

$$
Z_{\mathrm{in}}=\left(R_{1} \| R_{2}\right) \| \beta\left(R_{E} \| R_{L}\right) \equiv R_{\mathrm{in}}
$$

choose $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\text {out }}$ by the necessary low frequency signal cutoff

$$
C_{\mathrm{in}}>\sim \frac{1}{\omega_{3 \mathrm{~dB}} R_{\mathrm{in}}} \quad C_{\mathrm{out}}>\sim \frac{1}{\omega_{3 \mathrm{~dB}} R_{L}}
$$

Building a simple current source

This circuit is a good constant current source a long as $V_{C}>V_{B B}$ (small rise of $\left.I_{C} w / V_{B B}\right)$
Otherwise, $\quad \beta$ decreases as we approach saturation.

Compliance

A current source can only provide constant current for a limited range of voltage at the collector. This output voltage range is called the output compliance of the current source.

The compliance is set by the requirement that the transistor stay in the active region. A current source such at the one to the right has limited compliance related to R_{E} :

Compliance $\sim V_{C C}-\left(V_{\text {sat }}+I_{E} R_{E}\right)-V_{E E}$

Inverting amplifier (aka common emitter amplifier)

Assume the transistor is in the active region, then the analysis of this circuit is identical to the emitter follower

$$
\begin{aligned}
& \iota_{e}=\frac{v_{e}}{R_{E}}=\frac{v_{\mathrm{in}}}{R_{E}} \\
&\left(\text { using } \iota_{c} \sim \iota_{e}\right) \\
& v_{\text {out }}=-\iota_{c} R_{C}=\frac{-R_{C}}{R_{E}} v_{\text {in }}
\end{aligned} \quad \operatorname{Gain}(G)=\frac{-R_{C}}{R_{E}}
$$

$Z_{\text {in }}$ is identical to the emitter follower
$\mathrm{Z}_{\text {out }}$ is different
The collector looks like a very large resistance

$$
Z_{\text {out }}=R_{C} \| \infty \simeq R_{C}
$$

$$
\begin{aligned}
& \text { cross checking with the Thevenin equivalent } \\
& v_{\text {out }}^{\text {o.C. }}=\frac{-R_{C}}{R_{E}} v_{\text {in }} \quad \text { here we have use the small signal short: } \\
& \iota_{\text {out }}^{\text {s.C. }}=-\iota_{c}=\frac{-v_{\text {in }}}{R_{E}}
\end{aligned}
$$

This circuit cannot maintain a large gain while driving a low impedance load

$$
|G|_{R_{L}}=\frac{R_{C} \| R_{L}}{R_{E}}<\frac{R_{C}}{R_{E}}
$$

The solution to allow driving a heavier load is to add an emitter follower

$$
G=\frac{-R_{C} \| \beta R_{L}}{R_{E}} \sim \frac{-R_{C}}{R_{E}}
$$

Part 2

Hybrid Parameters

In our simple analysis of transistor circuits thus far we have assumed the applicability of a simple model $V_{B E} \sim 0.6 V, \Delta V_{B E}=v_{B E}=0$ in the active region.

These assumptions lead to unphysical results in some cases
1)
$\mathrm{y}_{\mathrm{oin}} \mathrm{V}_{\mathrm{out}} G=\frac{-R_{C}}{R_{E}} \rightarrow \infty$ implies infinite gain of inverting amplifier
2)
$Z_{\text {out }}=\frac{R_{B}}{\beta+1} \rightarrow 0$ implies zero (or at least arbitrarily small) output impedance

We can refine the simple model for small signal analysis by making a Taylor expansion of the input and output characteristics that we saw earlier.

$$
\begin{gathered}
V_{B E}=f_{1}\left(I_{B}, V_{C E}\right) \\
\rightarrow v_{B E}=\left.\frac{\delta f_{1}}{\delta I_{B}}\right|_{C C E} \iota_{b}+\left.\frac{\delta f_{1}}{\delta V_{C E}}\right|_{I_{B}} v_{c e} \\
=h_{i e} \iota_{b}+h_{r e} v_{c e}
\end{gathered}
$$

$$
\begin{gathered}
I_{C}=f_{2}\left(I_{B}, V_{C E}\right) \\
\rightarrow \iota_{C}=\left.\frac{\delta f_{2}}{\delta I_{B}}\right|_{V_{C E}} \iota_{b}+\left.\frac{\delta f_{2}}{\delta V_{C E}}\right|_{I_{B}} v_{c e} \\
=h_{f e} \iota_{b}+h_{o e} v_{c e}
\end{gathered}
$$

Using V=IR
h_{ie} is a resistance
h_{fe} is unit less
h_{re} is unit less $h_{o e}$ is $1 /$ resistance

The transistor model circuit described by these equations is shown in the figure below:

In practice V_{BE}, I_{C} depend only weakly on V_{CE}, in this limit h_{re} and $\mathrm{h}_{\mathrm{eo}} \sim 0$
With this approximation we get $\begin{aligned} & v_{b e}=h_{i e} \iota_{b} \\ & \iota_{c}=h_{f e} \iota_{b}\end{aligned}$
this should look somewhat familiar, recalling that $h_{f e} \sim \beta$
The transistor model the simplifies to

An alternate and more convenient model commonly used is
here $\quad r_{e} \equiv \frac{h_{i e}}{\beta+1}$
This is called the "T equivalent circuit"

Ebers-Moll Approximation

Above we have abandoned simple assumptions $V_{B E} \sim 0.6 \mathrm{~V}, \Delta V_{B E}=\nu_{B E}=0$ to fully describe a transistor in the active region.

More precisely I_{E} and V_{BE} are related by (the diode equation): $I_{E} \sim I_{0} e^{V_{B E} / \mathbf{V}_{\mathrm{T}}} \sim I_{C}$ where $\mathbf{V}_{\mathbf{T}} \equiv k T / q \simeq 25 \mathrm{mV}$ at room temperature
then $\quad \Delta I_{E}=\frac{I_{E}^{D . C .}}{V_{T}} \Delta V_{B E}$

$$
\iota_{e}=g_{m} v_{B E} \text { and } v_{B E}=\iota_{e} r_{e} \text { where } r_{e}=\frac{1}{g_{m}}=\frac{\mathbf{V}_{\mathbf{T}}}{I_{E}^{D . C .}}=\frac{25 \Omega}{I^{\text {in } \mathrm{mA}}} \text { at room temperature }
$$

Small signal T equivalent circuit of the transistor looks like:

- a current source controlled by ι_{b}
- voltage drop across B-E junction depends on current flowing through the device

Ebers-Moll illustrated. Logarithmic increase in V_{BE} with increasing I_{E} while in active region. The lower plot zooms in on the effect of I_{B} on the saturation voltage.

Small signal analysis of the inverting amplifier

Assume:
$R_{3} C_{2,}\left(R_{1} \| R_{2}\right) C_{2} \gg$ time intervals of interest
i.e. DC blocking
(refer to Lab manual pp. 115-116 for a review of methods to establish proper DC biasing)

Equivalent circuit (for small signal analysis):

$$
\begin{gathered}
v_{\text {in }}-\iota_{e}\left(r_{e}+R_{E}^{\prime}\right)=0 \\
v_{\text {out }}=\iota_{c} R_{C}
\end{gathered}
$$

Gain: \Rightarrow Gain $=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-R_{C}}{r_{e}+R_{E}^{\prime}} \simeq \frac{-R_{C}}{r_{e}+R_{3}} \quad \iota_{c} \sim \iota_{e}$
if $R_{E} \gg R_{3}$

1) Gain $<$ infinity even when $R_{3}=0$
2) When $R_{3}=0, G=-R_{C} / r_{e}$

Since $r_{e}=\mathbf{V}_{\mathbf{T}} / I_{E}=\mathbf{V}_{\mathbf{T}} /\left(I_{E}^{D C}+\iota_{e}\right)$ the gain will depend on the amplitude of the signal.
One can get a well defined G by setting $R_{3} \gg r_{e}$ for the entire signal range.
But then the maximum gain is limited by the R_{C} constraint namely,

$$
V_{C C}-I_{C}^{D C} R_{C} \simeq 1 / 2 V_{C C} \text { (for max. symmetric voltage swings at output) }
$$

Grounded emitter amplifier

consider the following circuit

$$
\begin{gathered}
G=-R_{C} / r_{e} \\
Z_{\text {in }}=\left(R_{1} \| R_{2}\right) \| \beta r_{e} \\
Z_{\text {out }} \simeq R_{C}
\end{gathered}
$$

We obtain a large gain but pay the cost with:

- small $Z_{\text {in }}$
- large $\mathrm{Z}_{\text {out }}$

But the more serious problem with this design is in the stability of the DC operating point.
Consider the effect of temperature variations:
At constant $\quad I_{E} \sim I_{C} \quad \Delta V_{B E}=-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (see text)
At constant $\quad V_{B E} \quad \frac{I_{C}^{(2)}}{I_{C}^{(1)}} \simeq 10^{\left(T_{2}-T_{1}\right) / 30^{\circ} C}$
As a consequence, a G.E. Initially biased so that $V_{C}=\frac{1}{2} V_{c c}$ will saturate (i.e. $V_{C}<\sim 0.6 V$) when $\Delta T=8^{\circ} C$

Also $\quad V_{B E}$ necessary to give a specific $\quad I_{C}$ will vary $\sim 100 \mathrm{mV}$ for different transistors of the same type

The above circuit is a lousy design for these reasons!

A stable operating point can be obtained by adding an R_{E}
Choose $\begin{aligned} R_{1}, R_{2} & \text { so } I_{E} R_{E} \sim 1 V(\text { i.e. } \ggg \\ & C_{E} \text { so } r_{e} C_{e} \gg \frac{1}{f_{3 d B}}\end{aligned}$
The DC bias is now stable and the large gain for AC signals is unaffected. But we may experience significant signal distortion due to variations in r_{e} with emitter current.

Analysis of grounded CE amplifier with a triangle waveform as input. Output distortions are obvious for changing currents in the transistor. The bottom plot shows how the gain of the circuit changes as the input wave form varies $G=\frac{v_{\text {out }}}{v_{\text {in }}} \simeq \frac{-R_{C}}{r_{e}} \simeq \frac{-R_{C}}{25 / I_{E}^{m a}}$. The gain varies a factor of two over the input signal shape from ~-300 to almost -660 .

Simple current source

This circuit is a good current source a long as $V_{C}>V_{B B}$ (small rise

Compliance $\sim V_{C C}-\left(V_{\text {sat }}+I_{E} R_{E}\right)-V_{E E}$
A current mirror can increase compliance range to within a few 10ths of a volt of the power supply and also improve $Z_{\text {out }}$.

A simple current mirror

No R_{E} to limit compliance of output transistor in this design.

$$
\begin{gathered}
V_{B E}^{1}=V_{B E}^{2} \\
I_{1,2} \simeq I_{0}^{(1,2)} e^{-q V_{B E} / k T_{1,2}}
\end{gathered} \quad\left(\mathrm{~V}_{\mathrm{BE}}<0 \text { for pnp transistor in active region }\right)
$$

substituting $-V_{B E}=k T_{1} \ln \frac{I_{1}}{I_{0}^{1}}$ in the expression for I_2

$$
I_{2}=I_{0}^{(2)}\left(\frac{I_{1}}{I_{0}^{(1)}}\right)^{T_{1} / T_{2}} \simeq \frac{I_{0}^{(2)}}{I_{0}^{(1)}} I_{1}\left\{1+\left(\frac{T_{1}}{T_{2}}-1\right) \ln \frac{I_{1}}{I_{0}^{(1)}}+\cdots\right\}
$$

I_{2} 'mirrors' or is 'programmed by' I_{1}

Comments on the current mirror:
i) $\quad I_{1}=\left(V_{C C}-0.6\right) / R_{P}$ (nearly constant in the active region) then
ii) if $\quad T_{1}=T_{2} \Rightarrow I_{2}=\frac{I_{0}^{(2)}}{I_{0}^{(1)}} I_{1} \quad$ (area scaling - current is 'mirrored')
iii)Thermal dependence: if $\quad T_{2}>T_{1} \Rightarrow \frac{I_{0}^{(2)}}{I_{0}^{(1)}}>1 \quad$ Saturation current grows w/ temp, leading to a net INCREASE in I_{C} with temperature (for fixed $V_{B E}$), net DECREASE in $\left|V_{B E}\right|$ with temperature of $\sim-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for fixed I_{C}. That's not obvious from looking at Ebers-Moll/diode equation.
Ideally $\mathrm{Z}_{\text {out }}$ should be \sim infinity for a current source. $\quad \Delta I=0=\frac{\Delta V}{R}$ This is not the case. Use the Early Effect to understand the finite $\mathrm{Z}_{\text {out }}$.

The Early Effect

The Early Effect describes I_{C} dependence on $V_{C E}$

It is parameterized as $I_{C}=I_{0} e^{-V_{B E} / \mathbf{V}_{\mathrm{T}}}\left(1+\frac{V_{B C}}{V_{A}}\right) \quad\left(\right.$ for $\left.\mathrm{V}_{\mathrm{CB}}>0\right) \sim 1 \%$ effect $/$ volt

In the mirror above $V_{B E}^{(1)}$ remains constant with changes in $V_{C B}^{(2)}$, but differences in $V_{C E}^{(1,2)}$ will break the symmetry due to the Early Effect.

$$
Z_{\text {out }}=\left[\frac{\delta I_{C}}{\delta V_{C E}}\right]^{-1} \simeq\left[\frac{\delta I_{C}}{\delta V_{B C}}\right]^{-1}=\left[\frac{I_{C}}{V_{A}}\right]^{-1} \equiv r_{o} \sim 100 k \Omega @ 1 m A \quad \frac{\Delta I_{C}}{\Delta V_{C E}} \text { goes as } \frac{1}{r_{o}}
$$

$\frac{1}{r_{o}}$ is related to the hybrid parameter $\frac{1}{h_{o e}}$
Recall: in our T equivalent model we took $\frac{1}{h_{o e}} \sim 0$ as one of our simplifying assumptions.

The two following methods can be used to increase $Z_{\text {out }}$ for the current source, however the cost is a slight reduction in compliance.

(1)Emitter resistors

(neglecting base currents)

$$
\begin{gathered}
V_{C C}-I_{C} R_{E}+V_{B E}=V_{B}=I_{C} R_{P} \\
I_{C} \simeq I_{P} \simeq \frac{V_{C C}-0.6 \mathrm{~V}}{R_{P}+R_{E}}
\end{gathered}
$$

To find $\mathrm{Z}_{\text {out }}$

$$
V_{B E}=V_{B}-\left(V_{C C}-I_{C} R_{E}\right)
$$

subs. $I_{C}=I_{0} e^{-V_{B E} / V_{T}}\left(1+\frac{V_{B C}}{V_{A}}\right)$
find changes in V_{BE}

So

$$
v_{b e}=\left(\frac{\delta I_{C}}{\delta V_{B E}} v_{b e}+\frac{\delta I_{C}}{\delta V_{B C}} v_{b c}\right) R_{E}
$$

$$
\simeq\left(\frac{-v_{b e}}{r_{e}}+\frac{I_{c}}{V_{A}} v_{b c}\right) R_{E}=\left(\frac{-v_{b e}}{r_{e}}+\frac{1}{r_{o}} v_{b c}\right) R_{E}
$$

noting that $v_{b e}=\iota_{c} R_{E} \quad\left(\mathrm{~V}_{\mathrm{B} 2}\right.$ is fixed by Q1)

$$
\iota_{c}\left(1+\frac{R_{E}}{r_{e}}\right)=\frac{1}{r_{o}} v_{b c} \Rightarrow Z_{\text {out }}=\frac{v_{b c}}{\iota_{c}}=r_{o}\left(1+\frac{R_{E}}{r_{e}}\right)
$$

The increase above r_{o} seems plausible since any increase in I_{C} would increase $\left|\mathrm{V}_{\mathrm{BE}}\right|$ thereby decreasing I_{C}. The emitter resistors work as a negative feedback system to help keep the current stable. But compliance is reduced somewhat by addition of R_{E} to the output transistor.

(2) Wilson Mirror

Both $V_{C E(2)}$ and $V_{C E(3)}$ are fixed (to fight Early effect)
Say I_{C} wants to increase due to an increase in $\mathrm{V}_{\mathrm{CE}(1)}$. This will also increase $\mathrm{V}_{\mathrm{BE}(2)}$

- thus increasing I_{P}
- thus increasing $\mathrm{V}_{\mathrm{BE}(1)}$
- thus decreasing I_{C}
- $\rightarrow \mathrm{I}_{\mathrm{C}}$ is held stable against Early Effect

For this circuit $Z_{\text {out }}=r_{0}\left(1+\frac{R_{P}}{r_{e}}\right)$

Compliance is reduced somewhat by addition of a second diode drop.

Part 3

Differential Amplifier

i) basis of most op amps and comparators
ii) good for sensing low level signals in a noisy environment

DC analysis of a basic differential amplifier
Assume: $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}$
$\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$
(operate in active region: $\mathrm{I}_{\mathrm{C}}>0, \mathrm{~V}_{\mathrm{CB}}>=0$)
To find $V_{\text {out }}$ in terms of V_{1}, V_{2} it is sufficient to find I_{1}, I_{2}
KVL (from base 1 to base 2):

$$
\begin{aligned}
& V_{1}-V_{B E}-I_{1} R_{E}+I_{2} R_{E}+V_{B E}-V_{2}=0 \\
& I_{2}=\frac{-\left(V_{1}-V_{2}\right)}{2 R_{E}}+\frac{1}{2} I_{T} \text { where } I_{T}=I_{1}+I_{2} \\
& \Rightarrow V_{\text {out }}=V_{C C}-I_{2} R_{C}
\end{aligned}
$$

To find I_{T} use KVL from base1 (base2) to V_{EE}
$V_{1}-V_{B E}-I_{1} R_{E}-I_{T} R_{T}=V_{E E}$
$V_{2}-V_{B E}-I_{2} R_{E}-I_{T} R_{T}=V_{E E}$
$\Rightarrow I_{T}=\frac{V_{1}+V_{2}-1.2 V-2 V_{E E}}{R_{E}+2 R_{T}}$ therefore $\quad I_{2,(1)}=\underbrace{\frac{\mp\left(V_{1}-V_{2}\right)}{2 R_{E}}}_{\text {differential mode }}+\underbrace{\frac{\frac{1}{2}\left(V_{1}+V_{2}\right)-0.6 V-V_{E E}}{R_{E}+2 R_{T}}}_{\text {common mode }}$
define $\quad V_{\mathrm{Dif}}=V_{1}-V_{2} \quad V_{\mathrm{CM}}=\frac{1}{2}\left(V_{1}+V_{2}\right)$ so $I_{1,2}=\frac{\mp V_{\text {dif }}}{2 R_{E}}+\frac{V_{\mathrm{CM}}-0.6 V-V_{E E}}{R_{E}+2 R_{T}}$
large $V_{\text {Dif }}=$ large $I_{2(1)}$
small $V_{\text {Dif }} \Rightarrow$ current suppressed by $\left(R_{E}+2 R_{T}\right)$
Therefore if $R_{E} \ll R_{T}$, \mid Gain \mid is much larger for differential voltages than for common voltages at the two inputs.

Small signal analysis of a differential amplifier

Assumptions:

$$
\begin{aligned}
V_{1}^{D C} & =V_{2}^{D C} \\
I_{1}^{D C} & =I_{2}^{D C} \\
r_{e 1}=r_{e 2} & =\frac{\mathbf{V}_{\mathbf{T}}}{(1 / 2) I_{T}}
\end{aligned}
$$

Using KVL from base 1 to base 2

$$
\begin{aligned}
& v_{1}-(\beta+1) \iota_{b l}\left(r_{e}+R_{E}\right)+(\beta+1) \iota_{b 2}\left(r_{e}+R_{E}\right)-v_{2}=0 \\
& \text { use }(\beta+1) \iota_{b} \simeq \iota_{c} \text { and } \iota_{1}+\iota_{2}=\iota_{T} \\
& \Rightarrow \quad \iota_{2}=\frac{-\left(v_{1}-v_{2}\right)}{2\left(r_{e}+R_{E}\right)}+\frac{1}{2} \iota_{T}
\end{aligned}
$$

therefore

$$
\nu_{o}=-\iota_{2} R_{C}=\underbrace{\left(v_{1}-v_{2}\right)}_{v_{\mathrm{Dif}}} \underbrace{\frac{R_{C}}{2\left(r_{e}+R_{E}\right)}}_{\text {Differential Gain } G_{\mathrm{Dif}}}-\underbrace{\frac{1}{2}\left(v_{1}+v_{2}\right)}_{v_{\mathrm{CM}}} \underbrace{\frac{R_{C}}{r_{e}+R_{E}+2 R_{T}}}_{\text {Common Mode Gain } G_{\mathrm{CM}}}
$$

Common Mode Rejection Ratio: $C M R R=\frac{G_{\mathrm{Dif}}}{G_{\mathrm{CM}}}=\frac{2 R_{T}+R_{E}+r_{e}}{2\left(R_{e}+r_{e}\right)} \simeq \frac{R_{T}}{R_{E}+r_{e}}$
CMRR is large in a good differential amplifier. R_{T} is often replaced by a current source to give maximum common mode rejection.

The CMMR of the differential amplifier may be significantly improved by adding a current source to the tail.

Assuming a perfect current source, we again solve for $\mathrm{I}_{1,2}$ as a function of $\mathrm{V}_{1,2}$
KVL: $\quad V_{1}-V_{B E 1}-I_{1} R_{E}+I_{2} R_{E}+V_{B E 2}-V_{2}=0$
use $I_{1}+I_{2}=I_{T}$ and $I \simeq I_{S} e^{V_{B E} / V_{T}}$ to write:

$$
\left(V_{1}-V_{2}\right)-I_{T} R_{E}\left(1-2 \frac{I_{2}}{I_{T}}\right)-\mathbf{V}_{\mathbf{T}} \ln \left(\frac{I_{T}}{I_{2}}-1\right)=0
$$

this relates I_{2} to $\mathrm{V}_{\text {dif }}$ - for the perfect current source (constant I_{T}), the output ($\propto I_{2}$) only depends on $\mathrm{V}_{\text {dif. }}$.

Consider two limiting cases:
i) if $I_{T} R_{E} \gg \mathbf{V}_{\mathbf{T}}(25 \mathrm{mV}$ at room temperature) then the current reduces to:
$I_{2}=\frac{-\left(V_{1}-V_{2}\right)}{2 R_{E}}+\frac{1}{2} I_{T}$ Differential gain is similar to above case.
ii) if $R_{E}=0$ then $\frac{I_{2}}{I_{T}}=\frac{1}{e^{\left(V_{1}-V_{2}\right) / \mathbf{V}_{\mathrm{T}}}+1}$ Amplifier quickly saturates to one of two states $\mathrm{I}_{2}=0$ or $\mathrm{I}_{2}=\mathrm{I}_{\mathrm{T}}$ for small $\left|\mathrm{V}_{1}-\mathrm{V}_{2}\right|$

The Miller Effect

An intrinsic capacitance connects the base to the collector. At high frequencies current can be diverted from the base to the collector via this capacitive coupling.
(This current flow is not related to the DC case of forward biasing the BC junction.)

The effects of this are two fold:
i) $Z_{\text {in }}$ "looking into the base" is reduced at large frequencies
ii) The gain is reduced because of the voltage divider effect of R_{S} and $Z_{\text {in }}$

Millers Theorem

Consider a 3-terminal network:

In the equivalent circuit: $\quad Z_{1}=\frac{Z}{(1-K)} \quad Z_{2}=\frac{Z K}{K-1} \quad K \equiv \frac{\nu_{2}}{v_{1}}$
proof:

$$
\iota_{1}=\frac{v_{1}-v_{2}}{Z}=v_{1}\left(\frac{1-K}{Z}\right)=\frac{v_{1}}{Z_{1}}
$$

$$
\iota_{2}=\frac{v_{2}-v_{1}}{Z}=v_{2}\left(\frac{1-1 / K}{Z}\right)=\frac{v_{2}}{Z_{2}}
$$

How much current flows through C_{BC} ?

$$
I=C_{B C} \frac{d V_{C a p}}{d t}=C_{B C}\left(v_{b}-v_{o}\right) \simeq C_{C B}(1-G) v_{b}
$$

C_{CB} looks like a capacitor that is 1-G times larger (remember G is negative...)

Analysis of the Miller effect in an amplifier circuit

Assume we have an ideal inverting amplifier
$\left(Z_{\text {in }}=\infty, Z_{\text {out }}=0\right.$, Gain $\left.=-A\right)$

Applying Miller's theorem, we can redraw the circuit as:

Note: we can ignore C_{2} in this analysis, because it's tied to the low Z output of the amplifier and thus has no effect on the signal.

Next we compute the overall gain of the amplifier circuit which is the product of the attenuation

$$
\begin{gathered}
v_{2}=-A v_{1}=-A v_{s} \frac{1}{1+j \omega R_{S} C_{1}}=-v_{s} \frac{A}{1+j \omega R_{S} C(1+A)} \\
\text { Gain }=\frac{-A}{1+j \omega R_{S} C(1+A)} \underbrace{\rightarrow}_{A \rightarrow \infty} \frac{-1}{j \omega R_{S} C}
\end{gathered}
$$

i) In the limit of low source impedance, the gain is simply $-A$ as per the design of the amplifier sub-circuit.
ii) For finite source impedance, the device becomes a "perfect integrator" as the gain approaches infinity. i.e. for $\quad v_{\text {in }}=e^{j \omega t} \quad v_{\text {out }} \propto \frac{1}{j \omega} e^{j \omega t}$

Miller Effect in the Grounded CE Amplifier

This is more complex that the ideal case above, because of finite input and output impedances.
However, we can simplify matters for not-too-large values of the input frequency.

Begin by calculating K:
$(\mathrm{KCL}) \quad \iota_{c}=\iota_{L}+\iota_{f}$
(Trans. Eqn.) $\iota_{c} \simeq \iota_{e}=\nu_{1} / r_{e}$
where:

$$
\begin{aligned}
& \iota_{L}=-v_{2} / R_{C} \\
& \iota_{f}=\left(v_{1}-v_{2}\right) j \omega C_{C B}
\end{aligned}
$$

Then (KCL) becomes

$$
\begin{gathered}
\frac{v_{1}}{r_{e}}=-\frac{v_{2}}{R_{C}}+\left(v_{1}-v_{2}\right) j \omega C_{C B} \\
\Rightarrow K \equiv \frac{v_{2}}{v_{1}}=\frac{-\left(\frac{R_{C}}{r_{e}}-j \omega R_{C} C_{C B}\right)}{\left(1+j \omega R_{C} C_{C B}\right)}
\end{gathered}
$$

$$
\begin{array}{ll|l}
1-K \rightarrow \frac{R_{C}}{r_{e}} \\
\frac{K}{1-K} \rightarrow 1
\end{array} \quad \text { for } \omega \ll \frac{1}{R_{C} C_{C B}} \text { and } r_{e} \ll R_{C} \quad \begin{aligned}
& \text { i.e. } \\
& \cdot
\end{aligned} \quad \begin{aligned}
& \text { current flow through } C_{C B} \text { is small } \\
& Z_{C_{C B}} \gg R_{C}=Z_{\text {out }} \text { output not loaded }
\end{aligned}
$$

Therefore the equivalent circuit can be modeled as below (using $\quad C_{1}=C_{C B} R_{C} / r_{e} \quad C_{2}=C_{C B}$)

Since the impedance "looking into the base" of the transistor is βr_{e} the input signal sees $\mathrm{Z}_{\text {in }}$ at the base to be $Z_{C_{1}} \| \beta r_{e}$

$$
\begin{aligned}
& v_{1}=v_{S} \frac{Z_{\text {in }}}{Z_{\text {in }}+R_{S}}=v_{S} \frac{Z_{C_{1}} \| \beta r_{e}}{Z_{C_{1}} \| \beta r_{e}+R_{S}}=v_{S} \frac{\beta r_{e}}{R_{S}+\beta r_{e}}\left[\frac{1}{1+j \omega C_{1}\left(R_{S} \| \beta r_{e}\right)}\right] \\
& v_{2}=-v_{1} \frac{R_{C}}{r_{e}} \text { from our assumption that } \omega \ll \frac{1}{R_{C} C_{C B}}
\end{aligned}
$$

Solving for the circuit's gain $G=\frac{v_{2}}{v_{S}}=-\frac{\beta R_{C}}{R_{S}+\beta r_{e}}\left[\frac{1}{1+j \omega\left(\frac{R_{C}}{r_{e}}\right) C_{C B}\left(R_{S} \| \beta r_{e}\right)}\right]$
This has the form of a low pass filter with $\quad \omega_{3 \mathrm{~dB}}=\frac{1}{\left(\frac{R_{C}}{r_{e}}\right) C_{C B}\left(R_{S} \| \beta r_{e}\right)}$
Notice that for large $R_{S} \simeq \beta r_{e}$ then

$$
\omega_{3 \mathrm{~dB}} \simeq \frac{1}{\frac{1}{2} \beta R_{C} C_{C B}} \ll \frac{1}{R_{C} C_{C B}} \text { (and above derivations are still valid) }
$$

This means that the Miller Effect becomes the dominant cause of gain loss at high frequencies.
Summary: The Miller Effect arises when the following conditions are present:

1) large inverting gain
2) non-negligible output impedance of signal source
3) capacitance between input and output of amplifier circuit

Designs that avoid the Miller Effect

Differential amp w/ one input grounded	Cascode connection		
- Input and output have the same phase			
- At base of $\mathrm{Q} 2 \mathrm{Z}_{\text {out }}=0$ (grounded) preventing			
"local" Miller effect at Q 2		\quad	"collector" resistor for Q 1 is $r_{e 2}$,
:---			
thus $\mathrm{G}_{(1)} \sim-1$ (not large)			
$\mathrm{Z}_{\text {out }}=0$ at the base of Q 2			

The Bootstrap Technique

Small signal equiv.

On the flipside, the Miller Technique may also be used to raise the input impedance of a circuit. In order to provide a "stiff" DC bias voltage at the base of the transistor in an emitter follower, we required $R_{1} \simeq R_{2} \simeq \frac{1}{10} \beta R_{E}$ for a single supply follower like the one show above. From the small signal equiv. circuit we calculated $Z_{\text {in }}=R_{\text {Div }} \| \beta R_{E} \simeq R_{\text {Div }}$ where $\quad R_{\text {Div }} \simeq \frac{1}{20} \beta R_{E} \quad$ This is much less that what is possible for an emitter follower, namely $Z_{\text {in }} \ll \beta R_{E}$

The circuit below has a much larger input impedance $Z_{\text {in }} \sim \beta R_{E}$. Almost no (A.C.) current flows through R_{B} because both ends are at nearly the same (A.C.) voltage.

$$
\begin{aligned}
& R_{L}=R_{E} \| R_{\mathrm{div}} \\
& R_{B}^{\prime}=\frac{R_{L}}{R_{B}} \rightarrow \infty \\
& R^{\prime \prime}{ }_{B}=-\frac{R_{L}}{r_{e}} R_{B} \rightarrow-\infty
\end{aligned}
$$

$K \equiv \frac{\nu_{2}}{v_{1}}=\frac{R_{L}}{R_{L}+r_{e}} \quad 1-K=\frac{r_{e}}{R_{L}+R_{e}} \simeq \frac{r_{e}}{R_{L}} \quad \frac{K}{K-1}=\frac{-R_{L}}{r_{e}} \quad$ (large and negative) $R_{B}^{\prime \prime}=\frac{-R_{L}}{r_{e}} R_{B} \rightarrow-\infty \quad$ and $\quad R_{L} \| R_{B}^{\prime \prime} \simeq R_{L}$ therefore $Z_{\mathrm{in}} \simeq \beta\left(r_{e}+R_{L}\right)$

