
PHYSICS 321 Final Examination (12 December 2002) 
Time limit 3 hours. Answer all 6 questions. 
 
1. You and an assistant are holding the (opposite) ends 

of a long plank when oops! the butterfingered assis-
tant drops his end. If the plank’s weight is W and if 
the plank was level when it was dropped, at that 
(initial) instant the weight you feel is ________ ? 

 
(Hint: use Newton’s 2nd Law for rotations & linear motion.) 
 
Solution: 
 N I= θ&&     (Newton’s 2nd Law for rotations) 
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l &&    (Newton’s 2nd Law for linear motion) 

Eliminating θ&&  we have 
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2. The surface gravity of the Moon is almost exactly 61  of the Earth’s, and its curva-

ture is such that in 1870 meters of forward progress the surface drops 1 meter. How 
fast would a projectile launched horizontally have to move in order to make a closed 
(circular) orbit around the Moon? 

 
(Hint: WWGD [what would Galileo do?].) 
 
Solution: 
The projectile must fall 1 meter for every 1870 meters of forward motion. Thus, 
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3. A pendulum consists of a massless rigid rod 

of length R with a weight of mass m attached 
to its end. The bob is released from a height 
h above a table, upon which is resting a 
block of mass 2m, whose end is exactly be-
low the point of suspension. There is no fric-
tion between block and table. The bob col-
lides elastically with the block. To what 
height does it rise, and does it rebound or 
continue in the same direction? 

 
Describe the result if the bob had mass 2m and the block mass m. 
 
Solution: 
Use conservation of kinetic energy and linear momentum to describe the collision. 
Then 
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and eliminating u′  we find 
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This gives either the uninteresting solution v v′=  (no collision) or the interesting one 
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The latter represents a rebound ( 0v′ < ). Since the velocity of the bob before the colli-
sion is given by energy conservation as 
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we see 
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′ = = . The bob rebounds to 1/9 of its original height. 

 
If the bob weighed 2m and the block weighed m, the combination of energy and mo-
mentum conservation would give 
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That is, the bob continues in the same direction at 1/3 of its original speed. (The block  
moves fast enough to get out of the way!) The bob again rises to height 9h h′ = . 



 
4. A bead of mass m slides frictionlessly on a hoop of radius R 

that is oriented vertically and rotates about a diameter with 
constant angular velocity ω.  
a) Write the Lagrangian of the system in appropriate gen-

eralized coordinates, and find the equation(s) of motion. 
 
b) Show that there is a critical value ωc of  the rotational 

velocity such that for cω < ω  the equilibrium position is 

at the bottom center, whereas for cω > ω  the equilibrium 

position is at a non-zero angle θ. 
 

c) Examine small oscillations about equilibrium in both 
cases and determine whether the equilibria are stable or 
unstable, and if stable, determine their oscillation fre-
quencies. 

Solution: 
The Lagrangian is 
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and the equation of motion is 

 ( ) ( )2 2 2 2 cos sineff

d L
mR V mR
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∂ ∂  = θ = − θ = −Ω + ω θ θ ∂θ ∂θ 
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where 2 g RΩ =  and 
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At equilibrium, 0θ =&& . Thus if 2 2Ω > ω  the only equilibria are 0,θ = π , whereas if 

2 2Ω < ω , there is also a third equilibrium point at 
2
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If we expand ( )effV θ  about the equilibrium points we find 
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and for cω > ω , 
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For any ω the equilibrium at θ = π  is unstable—the potential has a maximum there. 
 
For cω < ω  the equilibrium at 0θ =  is stable, and the angular frequency of small os-

cillations about that point is 2 2Ω − ω . 
 
For cω > ω  the equilibrium at 0θ =  is unstable (the coefficient of 2θ  has changed 

sign, turning a minimum into a maximum), but the equilibrium at cθ = θ  is stable. 

The angular frequency of small oscillations about that point is 2 2ω − Ω . 
 
 

 
5. A block of mass m is attached to two 

fixed posts by springs of constant k and 
negligible mass, as shown, and executes 
simple harmonic motion in the horizontal 
direction. (It slides frictionlessly on a ta-
ble.) 
 
a) What is the frequency of oscillation? 
b) A lump of putty, also of mass m, falls on the block and sticks to it. What is the ef-

fect on the amplitude and frequency of the subsequent oscillation if 
1) the lump hits just when the block is at an extreme end of its oscillation; 
2) the lump hits when the block is exactly in the middle of its oscillation? 

 
Solution: 
The equation of motion of the oscillator before the putty falls is 
 2 0mx kx+ =&&  

so the angular frequency of oscillation is 
2k
m

ω = .  

If the putty falls at the limit of the oscillation, i.e. maxx x= , the velocity of the block is 
0, so all that happens is the mass, and hence the frequency changes. The new fre-

quency is 
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If the putty falls when 0x =  the velocity is maximum. Then, by conservation of lin-

ear momentum the new velocity is 
1
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v v′ = , so that the kinetic energy falls by a factor 

of 2 (2× the mass, ¼ of the velocity squared). But at the extrema of the motion, all the 
energy is potential (KE=0) so that the square of the new amplitude must be half the 
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square of the old. That is, we have max max

1
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x x′ = . The frequency will be the same as 

in case 1) above. 
  

 
6. A particle of mass m moving in one dimension is subject to the force  

( )0 sinhF F ax= − . 

a) What is the potential energy corresponding to this force? 
b) Does this potential have a stable equilibrium position? 
c) If the answer to b) above is “Yes”, what is the period of small oscillations about 

equilibrium? 
d) If the answer to b) above is “Yes”, find an expression for the period of oscillations 

that are not small. (Do not attempt to evaluate this expression!)  
 
Solution: 

Since 
dV

F
dx

= − , we may immediately integrate and, disregarding a constant of inte-

gration, find 
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Since this potential has a single minimum and becomes infinite at x = ±∞ , we see 
that there is a stable equilibrium position at 0x = . If we expand about this point we 
find 
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The frequency of small oscillations is therefore 0F a
m

ω =  and the period is  

0

2
m

F a
τ = π . 

 
To find the period of non-small oscillations, we use conservation of energy: 
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where l  is the amplitude of the oscillation. This equation is separable, giving 
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The latter integral cannot be evaluated in closed form. 


