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Chapter 2

Solutions to the
One-Dimensional
Schrodinger Equation

2.1 Separation of Variables

The solution of partial differential equations is notoriously difficult. When it
can be applied, the method of separation of variables is effective. With this
method a partial differential equation in n variables is reduced to n ordi-
nary differential equations, for which there is a large literature on the meth-
ods of solution. We have already referred to this for the one-dimensional
Schrédinger Equation. Let us now apply it a little more systematically.

We suppose that we can represent the function of two dimensions as a
product of two one-dimensional functions:

U(z,t) = P(z)f(t) (2.1)
By direct substitution into the Schrédinger Equation :

o () _in(n) Y
— o T =5 + V(@)p(2)f (1) = ik (z) (2.2)

Except for isolated points where one of the functions vanishes, we are free
to divide through this equation by the product ¥ (z)f(t), to obtain:

21 d%y(z)

2m(z) dr?

+V(z)=1 %Z—JZ (2.3)




The lhs depends only on z and the rhs depends only on . Since these are
independent variables, I can choose one of them to be anything I want with-
out affecting the other. The only way the above equation can be consistent
with this is for the lhs and the rhs to be constant, independent of z or t.
Thus:

R? 1 d*(z
) V@ =F 24
1 df

where, by virtue of our discussion of operators, I have used E to represent the

constant, since we have decided to interpret the lhs of the S.E. as the Hamil-

tonian, which in classical physics is the energy of a particle. Note that this

separation depended on the fact that the potential was time independent.
Rewriting the equations as ordinary D.E.’s:

12 dy(x)
3+ V(@)i(x) = By(x) (26)
df E
a —1Ef(t) (2.7)

The solution of the second equation is trivial:
F(t) = Ceint (2.8)

Since we must eventually normalize the entire wave-function (z)g(t), we
might as well set C = 1, and throw the overall normalization constant into
the solution for 1. Thus, we have:

T(z,1) = p(z)e "nt (2.9)

As you might expect, solutions obtained by separation of variables are
only a fraction (infinitesimal) of the totality of solutions. However, there are
an infinite number of them, and it will be possible to construct an infinite
variety of new solutions by linear combinations of the separated solutions.
2.1.1 Properties of the separated solutions

The separation constant, F, is real

Suppose the separation constant is complex, i.e.:

E=FEy+il (2.10)



The solution for f is:
F(t) = eIt = eRtemi R (2.11)
The probability distribution for this solution is:
P(z,t) = &7 'yp(z)[? (2.12)

The probability integrated over all space is:

/oo P(z,t)dz = e%t/ [ (x)|? dz = Cent (2.13)

If we normalize the wave-function at t =0, C' =1, and:

20y

/oo P(z,t)dx = e (2.14)

The probability is not constant in time, unless I' = 0. Unless the total
probability of finding the particle anywhere in space changes with time, the
separation constant F is real.

Separated solutions are stationary states

With F real, a separated solution represents a state with a stationary proba-
bility distribution, P(z,t) = ¢ (z)*y(x) = P(z). For any dynamical variable
constructed from coordinates and momenta;:

@pt) = [ Q@2 T ywar= [wQu S s =(Q) 19

The expectation value is independent of time. It follows that the expectation
value (z) for the position is constant, so (p) = 0. Therefore, a separated
state is called a stationary state.

The stationary state has a definite energy

Since in operator form, the separated Schrodinger Equation is:

pQ
2 p+ V= By
m

It follows that:

E = %HV} (2.16)
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again verifying that F is the energy of the state associated with the separa-
tion constant, F.
Writing the equation for ¥(z,t) in terms of the Hamiltonian:

2
p
U=|— ¥ =FEU 2.1
H lQm + V(m)] (2.17)
it is obvious that:
(H) = /‘I/*H\Ildw = E/qp*zp dr=F (2.18)
We can apply the Hamiltonian again to both sides of the S.E. to obtain:
HHT = 12T = EHT = E?U (2.19)
From this it follows that:
(H?) = E? (2.20)
so that:
oF = (H?)— (H)*=0 (2.21)

A system in a stationary state has a definite energy, and a measurement of
energy will always yield the value, E.

Wave function for stationary states can be chosen to be real

Our only requirement on 1 (z) beyond that it satisfies the separated S.E. is
that it be normalizable. In this section we show that We can always take it
to be a real function if we want to. Suppose we happen to obtain a complex
solution 1, where the real and imaginary parts are linearly independent
(a complex solution At (z) where 1(z) is real but A is complex is not of
interest). Writing ¢ = 1), +i1); substituting in the the Schrodinger Equation ,
it is easy to show that 1, and 1); separately satisfy the Schrodinger Equation .
This follows from the reality of the operators in the Schrodinger Equation .
The complex solution really consists of two independent real solutions for the
same choice of E. This proves that we can always choose the stationary wave-
functions to be a real linear combination of the two independent solutions.
For a real wave-function:

P(z,t) = (z)” (2.22)

This doesn’t mean that we will always use the real form.



Parity of the stationary states for symmetric potentials

Another useful property of stationary solutions is obtained when the poten-
tial is an even function of z, i.e. V(z) = V(—=z). If we change variables z
to —z in the separated Schrodinger Equation :

W2 d(-2)
2m  dz?

Using the fact that V is even:

+V(—z)y(—z) = Ey(—x) (2.23)

_ W d(-2)
2m  dz?

+ V(z)y(—z) = Ey(—x) (2.24)

so it follows that for such potentials, if (z) is a solution then so is ¥(—z).
If the solution % (z), that we obtained has no particular symmetry around
z = 0 then ¢¥(—z) # 9(z), i.e. by changing z to —z we obtain a second
independent solution. We can now combine those linearly to obtain two new
functions:

Pi(z) = () + ¢ (—2), Po(z) = p(z) — ¢(—2) (2.25)

Clearly, 11 is an even function and 15 is an odd function of . Thus, it follows
that when V is an even function of z, the stationary solution can always be
taken as even or odd. This property is called parity. Even functions have
parity of 1, and odd functions have parity of -1. Classifying wave-functions
in this way is frequently very useful. It is apparent that choosing your
coordinate system to match the symmetry of the potential is a wise idea.

Orthogonality of the Stationary State Solutions

There is another important property of the stationary solutions. Consider
the equations for two different energies:

h? d2,¢

“om d:v; + V(z)pi = B (2.26)
h2 d2 *

—5 - T V(@)W] = Ej; (2.27)

Multiplying the first by 4] and the second by ; and subtracting the two
equations, we get:

J dx2

R L d*y;
35V R

] = (B; — Ej)¥jbi (2.28)



We can rewrite the lhs as:

h? d dip; dip
i

2mdz |V dr T da

2m dz ] = (Bi — Ej)yj¢i (2.29)

Integrating over all space:

- le % wid—;] =Emem [ wpha @)

Since we assume that our wave-functions are normalizable they must vanish
at infinity, so the lhs vanishes:

0= (E; - E,) /_O:o Wiaps da (2.31)

If E; and E; are different energies, it follows that:

| w5 @) da =0 (2.32)

Functions satisfying this condition are orthogonal. We can combine this
result with the normalization requirement to write:

| @y do = (2:33)

where §;; is the Kronecker delta symbol.

For a given E the second order differential equation for ¢ (z) has two
independent solutions. With more degrees of freedom (e.g. a particle in
three dimensions, multiple particles, particles with spin) there can be even
more wave-functions with the same energy. In quantum mechanics indepen-
dent solutions with the same energy are said to be degenerate. The above
argument tells us nothing about the orthogonality of degenerate solutions.

In one dimension, if V' is an even function, we can take the solutions to
be even and odd, which are necessarily orthogonal. This procedure won’t
help us when V' (z) has no special symmetry. The following argument is more
complicated than necessary for the one dimensional problem, but it has the
advantage that it is easily generalized to more complicated situations. Sup-
pose 14 (z) and () are two independent normalizable but non-orthogonal
solutions for the same energy. If one of the solutions is not normalizable, we
would have to discard it as unphysical and this would remove the degeneracy
for the energy, E. If neither solution is normalizable, then £ is not a phys-
ically possible value of the energy. Now let us assume that both solutions



are physical and normalized. Since linear combinations of the two solutions
are also solutions, we are free to let 1, = 1, be taken as one solution. We
can construct a second orthogonal solution as follows:

P2 = Alctpa + ) (2.34)

where A and c are constants. We shall see that ¢ can be chosen to orthogo-
nalize 11 and 19 and A can be chosen to normalize 1)5. For orthogonality,
we require that:

0= [wivedo =4 (c [wivads+ [wippds) =4 (et [vivao)
(2.35)
The orthogonality condition is satisfied by choosing;:

c= —/¢Z¢b dx (2.36)

If we choose the stationary state wave-functions to be real, then c is real.
To normalize 1)5:

[ wstads = 142 [+ dileba + il da

_ 4P {\CF +1 +c*/¢:;¢,, da:+c/¢;;¢a dm]
= A [|ef? +1 = 2[el?] = [AP(1 — |e]) (2:37)

Since [|19]? dz > 0, |¢| < 1. Moreover, |c| # 1. Proof: Suppose
lc| =1, Then [ |1)2|*dz = 0. Since |1)2|? > 0, the integral can vanish only if
1o = 0. In that case ¢, + ¥p = 0 so that ¥, and 1, would not be linearly
independent, contrary to our original assumption.

We are free to choose A to be real, obtaining:

A= 1 (2.38)

V1= lef?

We have demonstrated that all normalizable stationary state solutions
can be chosen to be orthogonal and normalized.



2.1.2 Linear Combinations of Separated Solutions

Since the time dependent Schrodinger Equation is homogeneous, arbitrary
linear combinations of the stationary state solutions (with their time depen-
dent factor included) are also solutions. Suppose we label the stationary
state solutions with a counting index n, writing the solution as 1, (z)e*Fnrt.
Then the linear combination:

U(z,t) = 3 cntpn(z)e 7! (2:39)

where ¢, can be any complex number, is also a solution. It can be shown that
the stationary state solutions of the Schrodinger Equation form a complete
set of functions, which means that any solution can be expressed as a linear
sum of the stationary state solutions.

Normalization of the Linear Combination

The constants used in constructing a wave-function as a linear sum of sta-
tionary state solutions are subject to the normalization requirement:

o0
/ U (z, 1) dz = 1 (2.40)
—0o0
The normalization condition can be carried out at ¢ = 0, giving us:

=3 % [7 depieme) do= XS de [ pi@o) do 24
t ) g

This doubly infinite sum looks pretty messy, but if we remember that the
states are orthogonal, the normalization condition has the simple form:

1= > cicdij = lal (2.42)
i g i

Example:

Suppose we make a combination that is 60% state 1, 30% state 2 and 10%
state 3:

U(x,t) = c(6hre " At + 0.3¢hpe "Rl 4+ 0.1epge " 1Y)
Here, ¢; = ¢, co = 0.5¢, ¢3 = 0.1c. The normalization condition is:

1 = |c>(-36 + .09 + 0.01) = 0.46]c|?
1
2
= =0.2.174 = 1.474
|c] 046 0.2.174, ¢ 7
_iB1y _iE2y _;E3y
U(z,t) = .885¢1e " "+ 0.442¢hge "R "+ 0.14T¢pze "R )
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Expectation values for a linear combination

Write the linear combination as:
-En
U(z,t) = z cnwn(w)e_ZTt = Z an(t)n(z) (2.43)
n n

where the quantity:

does not depend on z. The expectation value of any physical operator

(9(§,\/) is:

(0) = / (Za;zpi) (OZajqp) dz = Za;-*aj / PiOyjdr  (2.44)
) J 1]

Suppose we replace O with the energy operator, E = p?/2m + V. From the
separated Schrodinger Equation itself:

(P2/2m + V) P = Egp;

so by substitution into Eq. 2.44
(E) = Zaz‘aj/zﬁiEjzﬁj d:vZafajEj /Wlpj dr = Za;‘ajEdij = Z |oi|2E;
ij ij ij i

(B) = lalB; (2.45)

You are asked in one of the problems to explain why a measurement of the
energy of system described as a mixture of stationary states must yield one
of the stationary state energies. Since this is true, we write:

(E) =) PRE;

where P; = |¢;|? is evidently the probability of measuring the energy FE;.
The probabilities add to 1, > ; P, = 1. Using the previous example for a
linear combination, the probabilities for measuring F, Fs and E3 are .783,
0.195 and 0.022. Although 10% of the wave function is made of the the third
state, there is only a 2% chance of measuring the energy associated with the
third state.

As another useful exercise, you can try calculating the general form for
the expectation values, (z) and (p).

11



2.2 The Infinite Square Well

Perhaps the simplest approximation (or model) to a binding potential is the
infinite square well. In this potential the particle is bounded between two
hard walls, and is otherwise free inside. A particle near the bottom of a
deep physically real potential will not behave very differently from one in
an infinitely deep well. The potential is given by:

V(m)z{o if -5 <o <3 (2.46)
oo otherwise.

Classically, a particle would bounce back and forth, reflecting elastically
off the walls. For the S.E. we require that the wave function be 0 in the
region of infinite potential. We require that the wave function be everywhere
continuous. If the function were not continuous it would not be possible to
assign a unique probability distribution to the point of discontinuity. The
continuity requirement means that the solutions must vanish at the walls of
the potential (z = £a/2). The infinite potential well is therefore a problem
of a free particle subject to a boundary condition. The boundary condition
has a profound effect on the solution.

Solutions that satisfy boundary conditions

Inside the well:

h? d?y
-~ 2 rY _ R 2.4
2m dz? 4 (247)
Defining k? = 2;:‘—2E:
d2
g R =0 (2.48)

We must distinguish the solutions for ¥ = 0 from those for k2 > 0. For both
cases, the equation has two independent solutions:

_ { c1 cos(kz) + cpsin(kz)  if k* > 0; (2.49)

c1 + ez if k=0.

The condition that the wave function vanish at = +a/2 rules out £ = 0,
since the corresponding solution is a straight line. For &k # 0, the boundary
conditions are satisfied by:

_ { cy cos(ka/2) — cosin(ka/2) (2.50)

c1 cos(ka/2) + co sin(ka/2)

12



Solving for ¢; and ca:
cicos(ka/2) =0  cosin(ka/2) =0 (2.51)

Either the coefficients are 0 or the trig functions are 0. To obtain non-zero
coefficients only special discrete values of k are possible. If:

ka/2 =7/2,3mw/2,--- (2.52)
then c¢; can be anything while ¢ = 0. If:
ka/2 = 7,27, 3m, - - (2.53)

then ¢y can be anything and ¢; = 0. For any other choice of k& there is no
solution.
Thus the solutions are:

_ [ecicos(nrz/a), forn =1,3,5,--;

V= {62 sin(nmz/a), for n=2,4,6,---. (2.54)

For both sets, k = nw/a. As advertised, we were able to express the sepa-
rated solutions as real functions.
Normalization of the solutions

The stationary state wave functions are easily normalized.
For odd n:

%) a/2 1 ra/2
/ Yrthp dz = / cos®(nmz/a) de = = (14 cos(2nrzx/a)) dz = a4
—00 —a/2 2 —a/2 2
(2.55)
For even n:
a/2 .9 1 rae/2 ] a
/ sin®(nmz/a)dx = = (1 —sin(2n7z/a)) de = = (2.56)
—a/2 2 —a/2 2

so that the sine and cosine solutions have the same normalization constant,
namely \/2/a. The normalized stationary state wave functions are:

\/gcos(mr:v/a), forn=1,3,5, -
b= (2.57)
\/gsin(mrx/a), for n=2,4,6,--.

13



Explicit Demonstration of Orthogonality

Consider the functions sin(nmz/a) and cos(mnz/a), for which n is even and
m is odd:

a/2 ] 1 ra/2 i .
/ sin(nmz/a) cos(mrzx/a)dr = 3 [sin ((n +m)7wz/a) + sin ((n — m)7z/a)] dx
—a/2 —a/2

a/2
=0

1 [cos ((n+m)rz/a) cos((n—m)rz/a)

2 (n+m)r/a (n—m)m/a a2

Next consider two different even functions, sin(nmz/a) and sin(mnz/a),
n # m. For this case n —m and n + m are even integers. Then:

/a/2 sin(nmz/a) sin(mnrz/a) dx = Lo [cos ((n — m)mz/a) — cos ((n +m)rz/a)] dz
—a/2 2 —a/2

1 {sin((n —m)rz/a) sin((n+ m)mc/a)]a/2
2 (n—m)w/a (n+m)m/a —a/2
1 [2 sin ((n —m)m/2)  2sin((n + m)7r/2)]

2 (n—m)m/a (n+m)r/a

Since both n — m and n 4+ m are even non-zero integers, this is zero. The
same method can be used to show that the cosine functions are orthogonal
to each other.

Allowed energies

Although there are an infinite number of solutions, the possible values of k
are limited to discrete values:

k=k,=—, n=1,2--- (2.58)

Since k is defined in terms of the energy, it follows that only discrete values
of energy are possible:

21.2 2,2
p_p M _PT

o — 2ma2’ n=12--- (2.59)
In the above derivation we noted that £ = 0 is not allowed. The particle
cannot exist inside the infinite well with 0 energy.

Note that the wave function for the lowest energy state, or ground-state,
n = 1, has no zeros (not counting the boundary points). The n = 2 state

14



has one zero, at the center of the well, the n = 3 state has two zeros, and
so on. This is characteristic of quantum states. The smoother the wave
function the lower the energy. We can understand this by recalling that the
kinetic energy is p?/2m, and that p is the derivative operator. The more
wiggles in the wave function, the larger the value of (p?).

By choosing the coordinate system to take advantage of the symmetry of
the potential, the solutions automatically have well-defined parity. Solutions
corresponding to E, with n odd have even parity, and solutions with n even
have odd parity. Finally, there is only one solution for each possible energy.
The stationary states are not degenerate.

General solution as a linear sum of stationary states

A completely general solution can be formed from the linear combination:

o0 [e.e]
U(z,t) = Z an sin(2nmz/a)e " En /Mt Z by cos((2m+1)mz/a)e  Em /M)t

n=1 m=1

(2.60)

At any given time this is the Fourier expansion of a function in the interval
—a/2 < z < a/2. In the theory of Fourier analysis, it is proved that all well-
behaved functions, with a period of a can be represented by such a series.
Since every term in the series vanishes at z = +a/2, the class of functions
that can be represented in this way is limited to functions which satisfy
the infinite well B.C. If the wave-function is known to have even parity, the
infinite series will contain only the cosine terms. If the wave-function is
known to be odd, the series will contain only the sine terms.

Effect of shifting the origin of z

Griffiths solves the problem by shifting the origin so that the walls are at
z = 0 and x = a. This simplifies the algebra to some extent. This shift
corresponds to defining a new coordinate, z’' = z+a/2, or z = 2’ —a/2. We
could express the preceding solutions in terms of z’, and obtain Griffith’s
results. We can simply note, however, that the solutions are still sines and
cosines. Since cos(0) = 1, and sin(0) = 0 only sine functions are allowed.
The stationary states are now expressed more compactly as:

P = \/gsin(mrx/a), n=123--- (2.61)

15



and the allowed energies are still the same:

2,2
:h7r 9

E, = —n%, n=12-.-. (2.62)

Relative to z = a/2, the parity of the functions alternate in n. A general
solution is given by:
o) B
U(z,t) = Z Cntn(x)e VR (2.63)

n=1

Provided we know ¥ at ¢t = 0, the coefficients ¢, are easily obtained, using
what Griffiths calls Fourier’s trick. Multiply both sides by one of the states,
1; and integrate over x, obtaining:

/0 (e, 0y () de = Y /0 (@) pn(2) dz = Y nbnj = ¢ (2.64)

cj = \/g/oa\If(x,O) sin(jrz/a) dx (2.65)

The proof that any function satisfying the boundary conditions can be rep-
resented by such a series is carried out in the theory of Fourier analysis. The
property is called completeness of the set of functions. If the state U(z, ) is
normalized then the coeflicients will satisfy the condition:

o
el =1 (2.66)
n=1

2.2.1 Example

Here is an example that doesn’t quite satisfy the B.C. Suppose we start with
an initial wave function that gives a uniform probability:
1

U(z,0) = NG (2.67)

so that: 1 .
P(z,0) = -, / P(z,0)dz = 1
0

A major defect in the function is that because of the singularities at the
end points the expectation values of momentum and energy are undefined.

16



Nevertheless, we can forge ahead and use Eq. 2.65 to calculate the Fourier

coefficients:
1 /2 re
Cp = %\/g/o sin(nrz/a) dz (2.68)
Cp = ? /Oa sin(nrz/a) dr = —?% [cos(nmz/a)]y (2.69)
Cp = g[l — cos(nm)] = g[l — (=" (2.70)

The coefficients vanish for even values of n. We expect this since the wave-
function has even parity around z = a/2. For odd values,

_ V2

™

Cn (2.71)
(a side remark: the relation, 3 |c,[? = 1, tells us that > 1 = %?) The
coefficients decrease very slowly, c¢,y1/¢, = n/(n + 1), so it takes many
terms to get a decent representation of this wave function. Moreover, the
series can never get things quite right at £ = 0 and £ = a. These are singular
points, and excluded from the Fourier statement of completeness. The wave
function can be written as:

24/2 /2 1 n 4 1
_ \/_\/_ —sin(lmm:)e_%: Z —sin(

™ a n a T™a n

n odd n odd

U(z,t) LAV
a

(2.72)
Using the general result of Eq. 2.45 the expectation value of the energy is:

(E) = Z |Cn|2En

Using our results for ¢, and the energies of the square well:

8 h2n?n?2 4K

2
E = e
[enl” En m2n2 2ma? ma?
ANHK?
E) = 2.73
(5 = 20 (2.73)

where N is the number of terms in the sum. The more terms we include
the higher the expectation value of the energy. We must cut off the infinite
sum to avoid having an infinite energy. For an electron in a space of atomic
dimensions, a = 107 m, for 64 terms E ~ 2000 eV. For comparison, the
binding energy of the hydrogen atom is only 13 eV and the electron’s kinetic
energy is comparable to the binding energy.

17



Plots of the probability distributions for summations over 2, 4, 8, 16, 32,
and 64 terms are shown in Figures 2.1 and 2.2. The horizontal scale is in
units of u=z/a and the vertical scale shows P(u) = |9 (u)|? = aP(z). If we
choose the expansion with 64 terms as the exact initial state wave function,
the time development of the probability distribution is illustrated in Figures
2.3 and 2.4. In these figures the unit of time is:

2ma’

At= " (2.74)

For an electron in a well of atomic size, a = 10710 m, At ~ 1.6 x 10717 g
From these figures one might infer that after the initial time the electron
tends to avoid the edge regions. One can see the onset of this tendency by
looking at even earlier times, as shown in Figures 2.5 and 2.6
A physically acceptable approximation to the square function might be:

U(z,0) = N(1 — e ®%)(1 — ex@=9)

in the limit aa >> 1. Oddly enough, this function can be normalized, and
expectation values of z, p and p? can be calculated, in terms of elementary
integrals. Moreover, the coefficients of the Fourier expansion can also be
obtained in terms of elementary integrals. The integrals are elementary, but
numerous.

2.3 The Harmonic Oscillator

The harmonic oscillator potential is one of the most important problems in
physics. This is not simply because it is soluble in terms of familiar functions
with simple properties, but also because it is usually the first approximation
when a particle is bound to a finite region in space. In the neighborhood of
a potential minimum, an analytic potential can be represented by a Taylor
series:
2
V() = V(zo) + [C;—ZLO (¢~ 20) + 5 l‘%} e ()

If =y is a point where the potential is minimum, then the second term
vanishes. Since a potential is always arbitrary within a constant, we can
ignore the first term. If we denote the value of the second derivative at
x = zg by the symbol k:

Viz) = %k(w — 50)2 + ez — 30)*+ (2.76)
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Unless the second derivative is 0, there is always some region in the neigh-
borhood of zg in which the harmonic oscillator terms dominates the rest
of the terms in the series. The infinite square well is an example of a po-
tential that does not meet this requirement. Practically any real potential
will satisfy it. In classical mechanics this feature motivates the study of
small motions, i.e. the behavior of systems where the amplitude of motion
about an equilibrium point is small enough that the higher order terms in
the Taylor expansion can be ignored.
The separated S.E. that accompanies this potential is:

e
2m  dx?

+ %kx%p(x) — Ey(z) (2.77)

Since the potential rises to infinity for both positive and negative values of
z, all the states of a particle will be bound states. Moreover, since Viip = 0,
the energies £ > 0.

Just as for the classical oscillator it is convenient to define a constant w
such that & = mw?. In classical mechanics w is the angular frequency of the

oscillator: 5 o (@) )
he d“ip(x mw
o S T2y (w) + () = 0 (2.78)

We then divide through by Aw.2 to obtain:

e dp(z)  mw
mw dz? h

z2p(z) + %dz(x) =0 (2.79)

Expressing F in units of hw by defining K = %:

b d(a)

mw o
5 —x
mw dx

h

+ (2K — Yo(z) =0 (2.80)

Solution by conversion to a dimensionless equation

The standard solution to the harmonic oscillator is obtained in terms of a

dimensionless variable:
mw

= - (2.81)
dp dy [mw
de — deV R
d?a _ mw d?
dz? ~ h de?
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By substitution:

d*y 2
T K =€) =0 (2:82)
To solve this we first examine the behavior for £2 >> K:
T _ ey (28)
The solutions of this equation are:
/2 (2.84)

Only the solution with the negative sign is physically possible. This choice
is a Gaussian function. Let us try to find the solution with this asymptotic
behavior by defining a new function, f(§):

P(E) = f(£)e €/ (2.85)

where f(£) does not need to vanish as ¢2 — oco. All we require is that
f(é“)e_’?/2 — 0 as £2 — co. In terms of f, the derivatives of 1(¢) are:

d >
% =(f'=&f)e (2.86)
d2¢ ! 762/2 " / 2 *62/2
@ —(f' = &N > EH(f = Ef (€ —1)f)e (2.87)

= (f" -2 + (@ -1)f) et (288)

Substituting this expression for % into the D.E. we obtain a differential
equation for f(¢):

(f" 261"+ (€ - Df + @K =€) f) e /2 =0 (2.89)

so that:
f"=2f+(2K-1)f=0 (2.90)
We will try to solve this equation in the form of an infinite series:
F=2 ¢ (2.91)
j=0
Fr=>jce™t (2.92)
j=1
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&f => g = jod (2.93)
=0

Jj=1

=300 -1 ="+ 1) + 2)cj428’ (2.94)
j=2

Jj=0
By substitution into the D.E.:

> lej+2(+ 1) (5 + 2)& — 2jc;& + (2K —1)¢;&/]1 =0 (2.95)
§=0

For this solution to be valid for all £, the coefficient of every power of ¢ must
vanish. This means that:

1-2K+2j
Cj+2:cj(

GFDG+2) 249

Provided we specify two constants, ¢y and ¢y, all the remaining coefficients
in the series are determined by this recursion relation. These two arbitrary
constants are what we expect for the solution of a second order differential
equation. One of them multiplies a function represented as an infinite series
of odd powers of ¢ and the other an infinite series of even powers of £&. These
two series provide two linearly independent solutions.

Of course, an infinite series is not useful if it doesn’t converge. We can
check convergence using the ratio test, comparing two successive terms, s,
and sp42 in the series:

sny2 (1 —2K +2n)&?
sn (n+1)(n+2)

For n >> K and n >> 1:

mE2 262

Sn n n
For any finite value of &:
. Sn42
lim —2*2 =
n—oo S,

According to the ratio test both the even and odd infinite series converge
for any finite value of &.
What is the behavior of the solutions as ¢ — oo. The ratio of the
coefficients of successive terms in either series for large j is:
Gz, W 2 (2.97)
¢  G+DE+2)
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But this is just the relation for the series expansion of the function, 652,
which diverges as £ — oo. Asymptotically both solutions for f(¢) diverge
at infinity like e¢”. Since these solutions are multiplied by e €/2 to obtain
¥(x), we see that both of the independent solutions for 1 diverge like e&*/2.
Thus, there seem to be no normalizable solutions to the harmonic oscillator
potential. But, wait a minute! Notice that if any constant c;i2 should
vanish, all the higher order constants will also vanish, and the infinite sum
will become a polynomial of order j, P;(§). Then:

Y(€) = P(§)e /%, limé? - oopp(€) = 0

By examining the recursion relation, we see that ¢,y o = 0if K = n+1/2,
reducing the infinite series to a polynomial of order n. If n is even, the even
solution is:

fe=co+ & + st + -+ "

but the odd series that starts with ¢;£ does not terminate. For this case we
must set ¢; = 0. Similarly, if we choose an odd value for n:

fo=c1é+c38 +c58° + - + ¢ &"

but the even solution does not terminate so we must set ¢g = 0. Other
choices for K will not permit a normalizable solution.
The parameter K was defined as E//(hw), so the allowed values of energy
are:
E=(n+1/2)hw, n=0,1,2,:-- (2.98)

These are the allowed energies for the quantum mechanical solution to the
harmonic oscillator potential. Unlike the n? behavior of the energy levels
for the square well, the energy levels for the harmonic oscillator are evenly
spaced, separated by steps of AFE = hw. For even values of n the solutions
are even functions of £ and for odd values they are odd functions of £&. The
polynomials for different values of n are orthogonal. The lowest possible
energy is Ey = %hw, which is therefore the ground state energy of the
harmonic oscillator. Consistent with the uncertainty principle, the oscillator
cannot be in a state of 0 energy, for which the expectation values of both
the momentum and position would be identically 0.
Solutions for f:

€= 5 (2.99)
)= f(E)e T (2.100)



Setting K =n + 1/2

n—7j

= 20— < 2.101
G2 = TGy ST (2.101)
Cj+2 n—7j
9 "] 2.102
cj G+ +2) ( )
mu.)m2

e n=0: f=1, ¢ =coe” H

mwm2

e n=L f=af ¢Y=cze =

_mwmz

o n=2; f=co(1-26%), ¢ =co(l—2s?)e™ "o

_ mwz?

o n=3: f=cié(1-3%), o =cz(l-2Pa?)e "5

The ground-state wave function is:

mwzz
Yo = coe 2 (2.103)
The probability distribution is:
mw:cz
P(z) = 9" = |col’e " (2.104)

This is a Gaussian with a standard deviation for the probability distribution
of z given by:

- (2.105)
To normalize the distribution:

1 mw

— (2.106)

V2mo? ~ V' 7n

For this state, both (x) and (p) are zero. After calculating (z?) and (p?) one
can show that:

|eol? =

oz0p = h/2 (2.107)

The higher the oscillator frequency (the greater the oscillator strength), the
less the uncertainty in position for the ground state and the greater the
uncertainty in momentum.

As polynomials in €, the solutions are known as the Hermite polynomials.
The advantage of writing the solution in terms of H,, () is that the functions
have been thoroughly studied and there are many useful formulas relating
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them. Traditionally, the Hermite polynomials are normalized so that the
coefficient of the highest power is 2"”. This convention, of course, precedes
the invention of quantum mechanics. The stationary states are:

mw .2

Yn(z) = ApHyp(§)e™ 22 (2.108)

At this point we have solved the harmonic oscillator problem in terms of
a complete set of orthogonal states. Any physical state can be represented
as linear combination of these states. Using the usual procedures one can
calculate the expectation value of any physical observable.

2.3.1 Solution of the H.O. using ladder operators

In operator form the Schrodinger Equation is:

2 2
(27’_72 4 %y) W = Eip (2.109)

where I use p,; to indicate explicitly that the momentum operator is a deriva-
tive with respect to x. The equation can be shortened to:

Hy = Evp (2.110)

H= (;;%)2 + (@wx)Z (2.111)

If we treat this operator equation like ordinary Algieba we can factor the

lhs into:
De . /m o . /m
H = — — — 2.112
(m Z\/2“’$) <\/2—m+ZV2“’x> (2.112)

h
i

where:

However, since p, = a% is a derivative operator that acts on z as well as on
any function to the right, this algebra isn’t right. Nevertheless, something
very interesting happens if we push ahead with this idea. Define the two
operators, a4 and a_, by:

Pe_ i /™ wa (2.113)

a =
= V2m 2

The products of the two operators are:

2 .
b 1 W w W
a-ay = %+§mw2$2—15($17x—pw37) = H—Zg(wpw—pwiﬂ) = H_?[xapz]
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and: )
1 w W
ara— = o + §mw2:c2 + ZE(mpw —pgx) =H + 7[:c,pz]

where the symbol [z,p] = zp — pz is called the commutator of the two
operators. For ordinary algebraic quantities the commutator is 0, but it
need not be for operators. For any function f(z):

E(xﬂ_d(wf)>_ﬁ< a _9a )

) dzr dz ) dr xdm

[w,pm]f(:(:) = (xpm —pzx)f(w) = xda:
= ihf (2.114)
Since the function f(z) is arbitrary, we can write:

[z,pz] = ik (2.115)

The commutator of x and p, is fundamental to the algebra of quantum
mechanics. It is easy to extend the result to three dimensions:

[z, ps] = [y,py] = [2,p2] = ih;
{ [z, py] = [z,0,]) = [¥,0z] = [¥,02] = [2,02) = [2,py] = 0. (2.116)

Using the commutation relation:

a_ay =H+ f%w (2.117)
Similarly, we can show that:
aya_- =H — hTW (2.118)
so that:
[a_,a4] = hw (2.119)

Now suppose there is some energy E for which there is a stationary state
g such that Hyp = Evg. Operating on this state with a_a:

1 1
a_a Yy = EYp + ihw/‘pE = (E + ihw)flpE (2.120)
Applying a; to both sides of this equation:

1
ara_aypp = (E+ Ehw)ay/JE (2.121)
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Now, a1 is itself some function of z, call it f(z):.

ava_f(z) = (B + ghw)f(z) (2.122)
or: - .
(H — T)f(w) = (E+ ihw)f(w) (2.123)
so that:
Hf(z) = (E+ hw)f(z) (2.124)

We see that f(x) is a stationary state solution to the Schréodinger Equa-
tion for the energy E' = E + hw:

f(#) = a1 = aPpinw (2.125)

where « is some constant that may depend on F, and ¥g45, is the solution
of the Schrodinger Equation for E' = F + @.
By the same process we can show that:

a_QﬁE = ﬂ¢E_ﬁw (2.126)

where ( is another constant that may depend on E. The operators a4 and
a_ allow us to start from the stationary state solution for any energy, E,
and work our way up and down from there obtaining solutions for higher
and lower energies ad infinitum. For this reason, they are called ladder
operators. After each ladder operation we would need to normalize the
result by adjusting the proportionality constants.

But it looks like we can start from a valid stationary state and continue
the lowering process to negative energies. Since the potential is everywhere
positive, a negative energy implies imaginary momentum, which is non-
physical. To prevent this, there must be a lowest energy, Fy > 0, for which:

a_1py =0 (2.127)
But: 1
H’(ﬁo = (a+a_ + §hw)¢0 = Eo’(p() (2128)
Using the condition that a_1y = 0:
1
Eﬁw’l/)o = E()’(ﬁ() (2.129)
SO:
1
Ey = Ehw (2.130)

32



Using only an algebraic argument we have deduced the ground state energy
of the harmonic oscillator. Once we find the ground state wave function we
can apply the raising operator to obtain successively higher energy states,
separated by AE = hw. No other energies are possible. If there were a state
at some energy not in this sequence we could apply the lowering operator
indefinitely to reach negative energies.

To get the ground state, we need only solve the first order differential
equation:

a_1Pp =0 (2.131)
Using the definition of a_ from Eq. 2.113:

(\/’;% — %wﬂvﬁﬁo =0 (2.132)

Multiplying through by +/2m and setting p, = —ih%, this reduces to:

dipg  mw

After dividing by 1)y, we get:

dh;(w%) = —%x (2.134)

Integrating this first order differential equation:

mw o

In(1pg) = a — o7, & (2.135)
so that: ,
Yo = Ae (2.136)
Example

The ground state wave function is 9y = Ae™®*", where a = mw/(2h).
Applying the raising operator:

b =C (\/’% —l—z'\/m;ﬂx) bo (2.137)

R dipo ., [mw?
- LR o]y st 2.1
Y1 Cz'\/2_ 7z +1C 5 Yy (2.138)
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B [muw? B [muw?
Y1 = O (~20) gy +iC %mpo —iC (:2/7% + %) 4o

(2.139)
1 = croe (2.140)

We can get the normalization constant ¢; from a general formula (see the
problems) or by setting [0 |41 (z)|* dz = 1.

2.4 Free Particle

A solution to the Schréodinger Equation for a free particle is more difficult
than one might at first expect. The separated equation is:
h? d?y(x)
2m  dz?

= Ey(z) (2.141)

Since V = 0, we know that E > 0, we can define a positive constant k? as:

2 21.2

p 9 hek
2mE/R2 = =k =hk, E=—
m/ h 9 p 9 2

The Schrédinger Equation becomes:

d*y(x)

dxz?

For a single choice of E, the solutions are sin(kz) and cos(kz). which are
not normalizable. A free particle with a unique energy is not a possibility.

Let us imagine that the particle is in a square well, and consider the
limit as the walls get so far apart that we can ignore them. For the square
well, we used the boundary condition that the wave function should vanish
at the walls. However, if the walls are going to recede to infinity, this
boundary condition is no longer relevant. Therefore we will keep both the
sine and cosine functions associated with a particular energy and expand
a free particle wave function as a linear sum of solutions with different
energies. The solutions are limited to sines and cosines with discrete values
of k, = nnz/a.

From Fourier analysis any periodic function defined in the range, —a <
z < a, can be represented by the series:

+k*)(z) =0 (2.142)

flx)=f+ i [an sin(nmz/a) + by, cos(nmz/a)] (2.143)

n=1
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where f is the average value of f(z), and:

ap = 1 /a f(z) sin(nrz/a)dx

a J—q
1 a
by, = a f(z) cos(nmz/a)dx

Using the exponential representation for the sine and cosine functions:

e e
sin(nrz/a) = — (2.144)
i
and: . .
1—x —1—
cos(nmz/a) = % (2.145)

flz)=f+ i % [(bn - ian)ei"a—ﬂx + (bn + ,L-an)e—i%”zc]

n=1
f(l‘) = fT+ 1 i (bm - iam)ei%ra61 + _Zl (bfm + iafm)ei%w
2 m=1 2 m=—00
00
= > cmeta ® (2.146)

m=—0oQ

where for m > 0:

b —iam 1 [° mrT, ..
em = T = Qa/ [cos( . ) zsm(mmca)] f(z)dz

—a

2a —a
and for m < 0,
— ] — 1 “
o = bm‘*% _ %/_a [COS(_?) +z‘sin(—m;m)] f(z)dz

:% Y

1 /a [cos(mwx)_ism(?)] f(z)dz 1 [o e VT fz) do

The formulas for ¢, for both the positive and negative integers can be
combined into: L ra
Cm = —/ eV f(x) de (2.147)
2a J_q
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Notice that the m = 0 term accounts for f, since:

1 o .
w=s5. | fa)do =]
a J—q

If the function f(z) is complex (f(z) = g(z) + ih(z)) where g(z) and
h(z) are real functions, we can write a separate Fourier series of the form of
Eq. 2.143 for g and h. When we combine these into an equation for f(z),
we will get a result that looks just like eqn. 2.143, but the coefficients a,,
and b, will be complex numbers. The above analysis therefore works equally
well for real and complex functions.

For a free particle we want the limit as a — co. We begin by observing
that successive values of nm/a are separated by m/a, which goes to 0 as
a — 00. Let us denote:

kn = nr/a, Ak =m/a (2.148)

If we imagine the values of k, lying on a k axis, we see that as a — oo,
the points get more and more crowded with the interval between each one
diminishing to 0. Thus as we let the walls go to infinity the values of k
become continuously distributed. We can write the spacing in k as:

Ak=" 50 (2.149)
a
We can re-express the Fourier sum by defining ¢(k,) = ¢, and inserting
1 = aAk/7:
f@y= 3 clkn)e™* (—) Ak (2.150)

knp=—00 i

Next, define b(k) = Zc(k):

o
fl@)= > blkn)e**Ak (2.151)
kn=—00
where:
b(kn) = S = L f(z)e *n® dy
O Y S

In the limit of Ak — 0, the sum goes over into an integral:

fz) = /_ : b(k)e*® dk (2.152)
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and:

b(k) — — /°° F(z)e—* dg

_)_
2T J_xo

We can make this symmetrical by defining:
F(k) = V2nb(k) (2.153)

so that: ) ©
_ = ik
f) = = /_ _FR)e ar (2.154)

and:

Fk) = % /_ O:O F(z)e % da

Equations 2.154 and 2.4 are the generalizations of the Fourier series
from a finite region in x to the entire z axis. Equations 2.154 can still
be thought of as a linear sum of states of different energies F; where the
energies have become continuously distributed. The function F(k) plays the
role of the linear expansion coefficients, and is called the Fourier transform
of the function f(z). Since the relationship between the two functions is
symmetrical, they are usually called the Fourier transform of each other.

In the discrete linear sums previously used we learned that the n*» com-
ponent is to be multiplied by e “#»t/"  This time dependence carries over
to the integral form so that for each component ¢(k) we must multiply by

BN 16 get the solution for ¢ > 0. Using:
k%h?
E=——>0
2m
and defining:
w=E/h (2.155)

the general time-dependent solution for the free-particle is:
Uz, t) = —— / * (k)eikre it gp (2.156)
’ V21 J—

One can show by direct substitution that ¥(z,t) defined in equation
2.156 satisfies the time-dependent Schrédinger Equation for any choice of
¢(k). For a particular choice of the initial wave function:

B(k) = \/%_W /_ Z U(x,0)e @ dz (2.157)
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We can equally well write the Fourier transforms explicitly in terms of
z, p and E:

U(z, 1) = # /_ O:o b(p)er ®2=E0) g (2.158)
¢(p) = # /_O:o U(z,0)e " h" da (2.159)

Example: A Gaussian wave packet

Consider the following normalized wave-function:

1 \V4 = 242
V@) = (goz) € =0 (2.160)
where: /4
1 , 1
= = — 2.161
@ (2#0%) ’ B 402 (2.161)

This represents a wave packet with (z) = 0 and a standard deviation of .
The Fourier transform is:

d(k) = \/Lz_w /_ o; e(—B*2*—ika) gy (2.162)

Completing the square in the exponential:
(k) = \/% [ o:o e—[Bz — ik/(28)]2eF* /48 dg (2.163)
_ \/%_ﬂe—kwm) 1 ‘: o~ 1B2=ik/ O g (2.164)

Letting u = Bz — ik/(20):

p(k) = —2_~k?/(48”) / e du/f = ——e FI)m (2.165)

vV 2 —00 ,8\/ 2w
_ k2
= ,3?/56 152 (2.166)
Substituting in the definition of a:
1A 1 2
00 =(32)  juz® (2.167)
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Expressing o, in terms of 3:

2432 1/4 1 k2 1 /4 42
w=(%) 5 =) 7 (2109

This is exactly the same form that we started with for ¢(z). The square of
the distribution |¢(k)|? is normalized over the region of k¥ running from —oo
to 00, 80 it probably is not too difficult to imagine that it is the probability
distribution for values of k. In fact the function plays the same role as the
¢p’s did in the infinite square well problem. The probability distribution is
a Gaussian function with standard deviation o = 8 = 1/(20,). Thus:

1

Ok0s = 5 (2.169)
If we use p = hk, we obtain:
h
0p0z = 5 (2.170)

which is the minimum value allowed by the Heisenberg uncertainty principle.

For this wave-function (z) = 0, and (p) = 0. We can put the particle
into uniform motion by modifying ¢(k) to shift the centroid to a non-zero
value:

932 1/4 1 (k=kg)? 1 \ V4 _G-ky)?
Ww=(T) sa () T em

We can now use this as the transform of the wave-function to obtain at
t=20:

1

1 oo . 1 1/4 roo _(kfko)2 .
¥ie) = 7= / R k= ( - ﬂQ) i Ce R e
(2.172)

Now let kK = k — kg, so that:

P (z) . /OO P(k)e™ ™ dk 1 ( 1 )1/4/00 ~557 Giletho)e g
) = —— e = —(—= e e K
V2 J -0 V2 \2np? —00
(2.173)
Now let kK = k — kg, so that:

1 0 ) 1 1 \l/4 | o K2
Tﬁ(x) = \/T_ﬂ- /_ ¢(k)ezk$ dk = E (277’82> ezkow/_ e 162 oIRT 4
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Again, using the trick of completing the square in the exponential:

1 1 1/4 X (e B )2 2 2
o) = = (2 52) ehor [~ e B g e (27)
™ s —00

Substituting u = % —ifx:

1 1 1/4 ko —p2? 2
P(z) = T (2Wﬂ2) e 26 e /_Ooe du (2.176)

The integral is v/7. Collecting the terms:

2\ /4
o= () e (2.177)
Using the definition 23? = #:
1\, 2 /(402
¢(x):(2 2) ¢tkor =%/ (407) (2.178)
o

which is the same as before except for the additional term involving kg.
The solution for ¥(z,t) requires still more work, using the form:

U(z, 1) = \/LQ_W / o:o B(k)eitkat) gp (2.179)

where w is a function of k:

w

- (2.180)

E_ p _ W
h 2mh  2m

2.4.1 Group Velocity

Another problem that we noticed with the single energy wave solutions of the
free particle equation was that their phase velocity was half of the particle
velocity. Now that we have a solution in terms of a wave packet, it is time
to ask how this wave-packet moves in space. If the packet consists of waves
spread over a small enough region of £ or momentum space, the packet will
not spread out so rapidly in time that it quickly becomes meaningless to
say it represents a localized particle. We assume that the the function ¢(k)
peaks fairly sharply around the value ky. We then expand w(k) in a first
order Taylor series around k = ky:
dw

w=wq + [%]ko (k — ko) = wo + w'(k — ko) (2.181)
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U(z,t) = \/% /_oo $(k)e!(hrwot=e/ (k=ko)) g, (2.182)

. o0 4 ,
U(z, 1) = \/LQ_WeW / B(R)eitkr— =k}t gp (2.183)
—0o0
1 . S . ’ . ’
U, 1) = e~ (ke T D ethout g (2.184)
A% —o0
U(z,t) = \/%e“wokod)t /_ " B (2.185)

= e ok P — w't) (2.186)
The probability distribution is:

|U(z,t)|* = |F(z — 't)? (2.187)

To the degree of validity of our linear approximation for the dependence
of frequency on k, we see that the wave packet is constant in time except
that it moves with velocity, w', along the z axis. This analysis holds for any
wave-packet that maintains its shape over time. The derivative, w' is called
the group velocity:

dw
= [ = 2.188
w=%, (2.188)
For the free-particle solution to the Schrédinger Equation :
hk?
W= vy = hko/m (2.189)

Associating the value ko with a deBroglie wave, we see that vy = pg/m. The
group velocity is the classical velocity for the central wave number in the
wave-packet.

2.5 Scattering

2.5.1 Distinction between scattering and bound states

We have examined the one-dimensional S.E. for particles bound in a finite
region of space, and we have developed the solution for a free particle. We
now turn to a study of more general potentials, for which it may be possible
to find both bound state and unbound states (resembling the free particle
solutions discussed above).

An example of a one-dimensional potential that could support both types
of states is shown in Fig. 2.7. In classical mechanics a particle with energy
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E < 0 is bound to a region around the orgin inside the well. For 0 < E <V,
the particle is bound if it is inside the well and free but restricted to either
positive or negative values of z if it is outside the well. In quantum mechanics
the particle is bound only if £ < 0 if V — 0 as z — Foo. For E > 0 the
solutions are called scattering states.

Real-life potentials usually go to 0 at infinity. In this case, a particle
with positive energy can move from some far distance into the region where
the potential is noticeable, respond to it in some way, and then proceed
on to infinity carrying the scars of the interaction. This process is called
scattering, and the states representing it are called scattering states. In
three dimensions we imagine a beam of particles impinging on a target. The
interaction results in waves emerging in all directions from the target. In one
dimension, the picture is like a light beam incident normally on a window.
Part of the light is reflected and part is transmitted and we describe the
process in terms of transmission and reflection coefficients.

For scattering problems we assume that the potential is 0 at infinity. In
fact, we usually assume that it exists only in a finite region, and can be
ignored everywhere outside this region. Thus, if £ > 0 we should use free
particle solutions of the S.E. outside the region of the potential. Although
we know that a free particle cannot be represented by a wave of a single
energy and momentum, it is convenient to represent scattering in terms of
such waves. We can imagine that the waves describe a continuous stream
of particles moving in the x direction. Then the probability of finding a
particular particle in some finite region is 0, but the probability of finding
some particle is pdz, where p is the density of particles in the beam. For a
wave-function representing a beam of particles we generally normalize the
wave function so that |[¥|? = p.

In this regard it is interesting to note with this normalization the particle
flux is equal to the probability current:

ih ov* ov

J:2m \Dax _\IJB_J:

For ¥ = \/ﬁei(kz_‘”t:
hk P
J = p— = p— = pv
m m
which is just the number of particles per second crossing any point on the
z axis. Generally, a measurement would be in the form of the ratio of final
amplitude to initial amplitude, so that the normalization drops out anyway.
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Figure 2.7: A potential that classically has both bound and unbound states.
Particles with energy FE, Vi, < E < 0. are bound to a region around
the origin. If 0 < F < V4, the particles are bound if they are inside
the well and free (but restricted to be either on the right side or the left
side of the potential barrier) if they are outside the well. If E > V,,,, the
particles are free and can be anywhere. Quantum mechanically, particles
with Vi, < E < 0. are bound, while particles with £ > 0 are unbound.
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2.5.2 The Dirac Delta function

Dirac invented a very useful function for dealing with quantum problems.
The Dirac Delta function is defined by the following properties:

0(x—x9) =0, x+#x (2.190)

/ab F(2)5(x — zg) dz = f(z0), <z <b (2.191)

From this integral property we see that the units of the function are the
inverse of the units of its argument.
The function has an important property:

&J(m — xp) (2.192)

Proof: Let a > 0. Substitute u = az, so that:

d(a(z — mo)) =

/f(w)6(a(:v =) /f 8(u — ug) (2.193)

1 ug /
=-—f(— - 2.194
S F(a)ie — 0 (2.194)
Let a < 0 and substitute b = —a = |al:
Z2

T= / 217 f(2)8(a(z — o)) dz = / F(2)5(=b(z — z0)) dw (2.195)

1

Let u = —b(z — z¢) so that dr = —du/b. The limits on u are such that
u1 > 0 and uy < 0. Then:

1 1 1
T=—5 [ rwsw du= [* fi) du=3rheo (2196)
When v =0, £ = g so:
1 1
I'=f(z0) = mf(ivo) (2.197)
Corollary:
0(x — xzo) = §(xp — x) (2.198)

Mathematicians have proved that the delta function is a valid concept.
It is not actually a function, but is what mathematicians call a distribution.
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2.5.3 Negative delta function potential

We shall try using the delta function itself as a potential in the Schrédinger
Equation :
V(z) = —ad(x) (2.199)

We can think of this as an approximation to a potential confined to a small
region in space. The force will act over this entire region, but we imagine
thinking of the region as shrinking to a point, and letting the potential
become infinite to compensate for this approximation.

Since §(z) has units of 1/L, a must have units of energy times length,
E- L.

Bound state

Since the potential reaches negative, the theorem that E > V,,;, does not
restrict the solutions to positive energies. Let us see if we can find solutions
with negative energy (bound states). We could think of these as the bound
states in a potential well whose width has shrunk to 0:

h? d%y
-z _ - FE 2.2
S — ab(z)p = By (2200
d>p  2ma 2mE
With C < 0, we can define a positive parameter x? = _2;?215 so that:
d*)p 2ma 9
w + ?5(3})¢ =K Tp (2.202)
The § function is 0 everywhere except at a single point, so except at = 0
we have: 2y
_ 2
The solution of this equation is:
P = Ae* + Be " (2.204)

For the wave function to vanish at £ — +oo, we must use:
P = Ae"?, <0 (2.205)

1 = Be "%, z>0 (2.206)
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For the wave function to be continuous at z = 0, A = B. To normalize the
solution:

0 0 0
1=]A7 (/ e dx +/ e_2mdm> = 2|A|2/ e 2% dy = |A|? /K
—o0 0 0
(2.207)
so:

A=k (2.208)

Our solution has a discontinuity in the derivative at the origin. The §
function specifies the magnitude of that discontinuity. To determine it we
integrate the Schrodinger Equation over a very small interval that encloses
the origin:

€ d%y 2ma (€ 9 [€
%Wdac—l— 7/% dz)pder =k %dea: (2.209)
Integrating this equation:
diyp© 2ma 9
kel - =2 2.210
]+ S = 202v0) (2210)
In the limit of € — O: e 5
ma
—| =—— 2.211
T =230 (2211)
The discontinuity in the derivative at the origin is therefore:
dy dlﬁ) 2ma
— - = =——"9(0 2.212
(d$)+ (%) =-Zv0) (2.212)
This condition is satisfied when:
2ma
K =/ —2mEh = % (2.214)

No matter what its strength the delta function potential has one and only
one bound state. The value of this single bound energy depends on the

strength of the potential:

ma2
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Scattering states
For a wave moving to the right, the solutions are:
T = eilke—wt) (2.216)
and for a wave moving to the left, the solution is:
U = gil—ha—wt) _ —i(ka-tot) (2.217)

If particles are incident from the left, there can be reflected waves moving to
the left, but on the right side there can only be transmitted waves moving
to the right:

T = Aeika—wt) 4 Beil=kz—wt) 5 < (2.218)
U = Ceilko—wt) x>0 (2.219)
The matching conditions at z = 0 yield:
2
A+B=0C, ikC — (ikA — ikB) = —%C (2.220)

Substituting from the first, B = C — A, into the second:

2ma

C 1
- = — 2.222
AT T-ime (2.222)
and: B © )
== (2.223)
- h2k
A A 1 +'Z;ﬁa

Since the probability distribution is proportional to the square of the wave
function, we can define the transmission probability as:

1

1 m2a?
nik2

T = |C/AP? = (2.224)

For large k the transmission approaches 1, and as k goes to 0, the transmis-
sion goes to 0. The reflected probability is given by:

m2a’?

F4.2
R = |B/A|2 = 1 g ];lzaz
nik2

(2.225)

We see that T+ R = 1.
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2.5.4 Positive delta function potential

If the potential is positive, the delta function presents a barrier to the incom-
ing wave. With the positive delta function the minimum potential energy is
0 and there are no negative energy solutions(bound states).

For positive energies, we use the same technique as above for the scat-
tering problem. This time the matching conditions at z = 0 yield:

A+B=C, A—B:C(l—?m—Za) (2.226)
1h“k

The only change is that we have changed the sign of a. Thus, 7" and R,
which depend on a? are unchanged. The scattering from a negative and a
positive delta function potential is identical.

2.6 The Finite Square Well

A good approximation to the force between a neutron and a nucleus is given

by:
_ VW, r<g
Vir)= {O, rsa (2.227)

Because of its sharp edges and flat bottom this potential is called a finite
square well. Its one-dimensional version is:

V(z) = =V, —a<z<a, V =0 elsewhere (2.228)

We can solve this problem by solving the free-particle problem with separate
coefficients in the three regions, * < —a, —a < £ < a, and £ > a. We match
the solutions and their derivatives at the boundaries separating the three
regions to get the final solution.

2.6.1 Bound States

For -V < E < 0, we require that the wave-function vanish at infinity.
Outside the well, where V = 0:

d? 2mE
d_;f =Ty =y (2.229)
where: o B
K2 = — Z; (2.230)
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the solutions are the same as for the delta function potential:
P(z) = Ae™, z< —a (2.231)
P(z) = Be ™, z>a (2.232)
Inside the well, where £ > Vj:

Py 2mE+V)
R (2.233)

where: (Ve + oV
g2 = 2l 72; ) _ 7;:20—&2 (2.234)

and the solutions are sines and cosines:

¥(z) = Csin(kz) + D cos(kz). —a<z<a (2.235)

Since the potential is even in z we know that we can write the solutions
as even and odd functions. For the even functions, A = B, and C = 0.
For the odd functions, B = —A and D = 0. As usual the wave function
must be continuous at the edge of the well, and since the well is finite the
derivative must also be continuous. Imposing these conditions at = a, the
even functions give us:

Be " = D coska (2.236)
—kBe " = —kD sin(ka) (2.237)
while the odd functions give:
Be™"* = C'sinka (2.238)
—kBe™ " = kC cos(ka) (2.239)

Two linear homogeneous equations in two unknowns can be solved only for
certain values of the coefficients of the unknowns. By taking the ratios of
the two equations in each pair, we see that:

ktan(ka) =k,  even solutions (2.240)
and:
kcot(ka) = —k,  odd solutions (2.241)
From Eqn. 2.234 :
k2 2mV
2= e L (2.242)
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and two conditions can be written in terms of k£ as:

2mV, Ve
tan(ka):\/hQ—k;)—l:\/%jE—l

and: & )
tan(ka) = —— = —
K Vo _ 1
VW+E
Note that: v
VOJSE > 1, sinceE <0

These two conditions can be written more compactly by defining:

2,2 _ 2ma®(Vy + E)

2=k -2 . 28 = (2ma® W)/ (h?)
2z _ W
22 W+E
By substitution:
tan(z) = 1/(20/2)2 — 1,  even solutions
tan(z) ! dd soluti
n(z) = ——————— odd solutions

(20/2)* =1

(2.243)

(2.244)

(2.245)

(2.246)

(2.247)

(2.248)

Eqns. 2.247 and 2.248 for z are transcendental and must be solved numeri-

cally. These solutions for z = ka specify the allowed values of:

_ hK?

FE Vo.
2m 0

The solutions for a series of values of 2y are illustrated graphically in Figs.

2.8-2.14

We obtain solutions only if z < z5, No matter how small zy there will be
at least one even solution. There is no odd solution unless zp > 7/2. The

total number of solutions is given by
N =Int(2z/7) + 1

where Int(z) is the integer part of z.
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Figure 2.8: Bound states for finite square well (z; = 1.5).
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Figure 2.9: Bound states for finite square well (z; = 3.0).

52




2003/09/12 12.49
z0= 6.0
20 T T T T T T T T T T T T T T I T T I T T T I T T T T T T T T T

17.5
15
12.5
10
7.5

2.5

M

E\

K||||||||m||||||||||/(||

8 10 12 14 16 18 20

o
N
IN
o

Even solutions

ARSI A A P

-2.5

-7.5
-10
-12.5
-15
-17.5
-20

2 4 6 8 10 12 14 16 18

O IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

N
a

0dd solutions

Figure 2.10: Bound states for finite square well (zy = 6.0).
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Figure 2.11: Bound states for finite square well (zy = 12.0).




2003/09/12

z0 = 24.0
20

17.5
15
12.5
10
7.5

2.5

{

T A VN V2 VT et

)

(@]
N
N

6 8 10 12 14 16

Even solutions

. A AN A Al L;/L;/'

-2.5

-7.5
-10
-12.5
-15
-17.5
-20

O IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII TTT

2 4 6 8 10 12 14 16

0dd solutions

18

N
a

Figure 2.12: Bound states for finite square well (zy = 24.0).
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Figure 2.13: Bound states for finite square well (zy = 48.0).
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Figure 2.14: Bound states for finite square well (zy = 96.0).
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For a wide, deep well, we can find many values of k for which zy >> z.
For the even wave functions the solutions of the transcendental equation
occur where tan(z) is very large so that:

zr(n—1/2)7, n=1,2---  even wave — functions

For the odd wave functions the solutions of the transcendental equation
occur where tan(z) is close to 0 so that:

zenmw, n=1,2--- odd wave — functions
We can summarize these solutions in one equation,
z =~ lr/2, 1=1,2---
Inserting the definition of z:

2 2ma*(Vo + E)

z = T ~ l27T2/4
l2h2 2
W+ E= 7;
ma
n?m2h?
Ez-%-'-m, n=1,2,3,--- (2249)

where odd values of n are associated with the even solutions and even values
of n are associated with the odd solutions. The values of these energies
relative to the bottom of the well are the energies associated with the infinite
square well of width 2a. The approximation that zy >> z breaks down as
E, — 0.

2.6.2 Scattering States

We can solve the equations for positive energies, using states outside the
well corresponding to left-moving and right-moving waves, just as we did for
the delta function potential. Inside the well, the wave function is a linear
combination of sine and cosine functions. Matching the wave function and
its derivative at £ = =4a, we can solve for the transmission and reflection
coefficients.

U = Aei(kw—wt) +Be—i(kw+wt) — (Aeik:c_i_Be—ikw)e—iwt’ < —a (2'250)
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Since the wave function in all three regions will have a common factor of

e ™! we can drop that term from the matching conditions and work with:
P(x) = Ae™*® 4 Be ™*®, < —a (2.251)

P(x) = Csin(kz) + D cos(kz), —a<z<a (2.252)

Y(z) = Fe*®, z>a (2.253)

For continuity of the wave function and its derivative at r = +a:

Ae~*e 4 Bet*® — _(C'sin(ka) + D cos(ka) (2.254)
Fetke = C'sin(ka) + D cos(ka) (2.255)

ikAe % — ik Be™® = k[C cos(ka) + D sin(ka)] (2.256)
ikFef® = k[C cos(ka) — Dsin(ka)] (2.257)

Our goal is to solve for B and F in terms of A. We can simplify the
arithmetic by defining some constants:

o =sin(ka), B =cos(ka), y=¢€*, r= T (2.258)

—v?’Be—ayC + ByD = A
aC+pD+~vF =0
v*B —ry[8C + aD] = A
rBC —raD —~vyF =0

- —ay By 0 B 1
0 « B 07 c | A 0
v —ryB —rya 0 D | 1
0 rf —-ra  —7 F 0

If we denote the matrix by M, the desired solution is obtained by inverting
it to obtain:

= AM™!

MO QW
S = O =

The inverse matrix is:
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r cos(2ka)—r? sin(2ka) 1 __sin(2ka)+r cos(2ka) r

277X r e 272X, - Z
T 29X3 2X3 T 27 X3 2X;3
_il o1 i i
27X 2Xo 2vX>o 2Xo
r 2 sin(1ka) —7 cos(2ka) r r cos(2ka)+sin(2ka)
272X1 2vX1 QgEXl (2’)/X1 )
2.259

where:

X, = —(r? — 1) sin(2ka) — r cos(2Ka)

N —

Xy = rsin(ka) — cos(ka)
X3 = rcos(ka) + sin(ka)
From this we obtain:

B/A =M+ M3

(r? + 1) sin(2ka)

_ _ ,—2ika
BA=—e (r2 — 1) sin(2ka) — 2r cos(2ka)

Replacing r with its definition from eqns. 2.258:

(k? — k?) sin(2ka)

BJA = _-2ika 2.260
/ ¢ (k2 + k?) sin(2ka) + 2ikk cos(2ka) ( )
The reflection coefficient is:
2 _ k2)?sin?%(2ka)
R=|B/A? = G 2.261
[B/A] (k2 4 k2)2sin®(2ka) + 4k2k? cos?(2ka) ( )
For the transmitted wave:
F/A= Mg+ Mg
_ T g T
92Xy J (r2 — 1) sin(2ka) — 2r cos(2ka)
_ _-2ika 21k (2.262)

2kk cos(2ka) + i(k? + K?) sin(2ka)
The transmission coefficient is:
T = |F/A|2

(k2 + K2)?

1252 sin’®(2ka)

T! = cos®(2ka) +
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(k2 + k2)? — 4K2K?

=14 1552 sin2(2/$a)
k2 _ 2)2
—14 (4#]’; sin?(2ka) > 1 (2.263)
K

If:

2
2%a = E“,/m(En +Vy) = nr (2.264)

T = 1, and the wave passes through the interaction region as if it weren’t
there. This is the condition for an integer number of half-wave lengths to fit
inside the potential well. It is the same condition that we obtained for the
stationary states of an infinite square well. For perfect transmission:

n2m2h?

FE = —
nt Vo= G e

(2.265)

which are the conditions for the stationary states of the infinite square well.
This effect has been observed for the scattering of low energy electrons (= 0.7
eV) by rare gas atoms, and is known as the Ramsauer effect.
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