Gravitation and Cosmology
Lecture 6: The energy-momentum tensor

The energy-momentum tensor

Reading: Ohanian, §2.4, 2.5

In this Chapter and subsequently, we shall follow the convention c=1.

Currents
The equation of current conservation (electrical, particle number, probability or whatever) is
fr +Rx=0. ©.1)
Written in 4-dimensional notation, this is
1.0" =0, 6.2)

1 . . .
where [, © —. Because it is the contraction of 2 tensor indices, and because we already know that
ix

flmtransforms as a covariant 4-vector), we see that Eq. 6.1 would be manifestly Lorentz invariant if

JMwere a contravariant 4-vector (more precisely, a vector density; but we shall leave this detail for a
future lecture).

Of course, something as basic as a conservation law must be Lorentz invariant--that is, it cannot
depend on the frame within which we make our observations. To prove it is so we must determine

that JMis indeed a 4-vector.

®
Consider the density for a point particle located at X (t):

(@0 = dit - x () (6.3)
Its time derivative is
Tr = - ?j—)t(xﬂd(? - x@®) =- K X%—)t(d(? - i(t))ﬂ (6.4)
e u
or
60 = di - x) S0 df - x0) . ©5)

Now, as we have seen, it is possible to define the proper time t as a function of t---and vice versa--by
integrating the equation

dt = deO-0 (6.6)
so, defining Xo(t) = t(t), we can rewrite r and®j in the combined form

6, Y = gt dOF - x) de- Oy KO

T 6.7)
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dx™(t)
dt

Since dt is manifestly a scalar under Lorentz transformation, and since is manifestly a

contravariant 4-vector, it remains only to show that
(4)ggm _ 6o qF/ _ 0
dVE™ - xMt)8° d (- x() d(t- x(t))

is a Lorentz invariant density.

To do this we note that

Od*x d(“)g%m - X8 =1,
(which is the same in any coordinate system!) so all we have left to show is that the 4-dimensional
volume element d*x is Lorentz invariant. But this is easy: in our special case,

d* = dy dz dx dt

d%’ = dy’ dz’ dx’ dt’ = dydzdx’ dt’ .

Hence we must show dx dt = dx”’ dt’.

Now, when changing variables of integration, we may write
RICSEND])
| |
i 1'[()(, t) i

The Jacobian, of the transformation

dx’ dt’ = dx dt . (6.8)

T, )i g”X’/ﬂX ﬂx’/ﬂtH _ % g - 9/3
Ykt 4T det & g = detg U
| N gﬂt' x it /‘ﬂtH g o g g (6.9)

=g @-v)=1.

Hence, dx’ dt’ = dx dt, and so J"is indeed a 4-vector with respect to Lorentz transformations.

Energy-momentum tensor
We now consider the object (for a point particle of mass m)

T, ) = m ot V- $eye T &)

g dt dt
Manifestly, again, this is a second-rank contravariant tensor (density) with respect to Lorentz

(6.10)

transformation. We now want to consider its physical meaning.

First of all, we see that
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T T™ @, 0 = m Ot dxdt(t) Oy, dg" - x"Mt)8

~. dx"(t) d

= — @agm . 0
m Ot i d ?‘“ x”tt)‘a (6.11)
. AT . . . o
or, since for a free particle, Wl 0, we find upon integrating by parts and discarding the
end-point contribution,
4 Xt _
T T™ = m Ot o >§’“ xt)9 e 0. (6.12)

. m .
Thatis, T is conserved.

Clearly, T™ is a conserved 4-vector density. If we integrate it over volume (over all space) we obtain

m
dx m

Ofx TV =m0 =™ (6.13)

Hence we can interpret T™ as the 4-momentum density of a point particle.

The tensor T™ is called the energy-momentum tensor. It is symmetric in mm.

4-momentum density of a gas
The energy-momentum tensor of a collection of non-interacting point particles is

N
T 9 = § A - %) pkEpk 6.14

k=0

On the other hand, the energy momentum tensor of a perfect fluid has the form"
T =U™U"(r +p) - ph™ (6.15)

where UMis the 4-velocity of the rest-frame of the fluid with respect to the observer’s frame (the
“Laboratory”). The parameters I and p are the “proper” energy density and pressure, respectively.

This means that for a relativistic perfect gas in its rest frame,
T = pd.

o T (6.16)

™ =7

and therefore, in this frame,

t  See Ohanian and Ruffini, 2nd. ed., prob. 2.28.
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1 2‘ 3) %k %k
=2 & % - %) (6.17)
k=0
N
®
=3 dI% - x () E. (6.18)
k=
For any gas, p £ % r ; for an ultra-relativistic gas (for example, a gas of photons)
p=1r. (6.19)

3

Sound in an ultrarelativistic gas
Eq. 6.19 has the following interesting consequence’ for the propagation of sound: from the second
law of thermodynamics, if n is the proper particle-number density and S is the proper entropy, then

KTds = pdgég + dQ— (6.20)

e 9
where K is Boltzmann'’s constant. We consider small disturbances dr, dp, dn and ¥ to the average
values of r, n, p, and ¥ (=0). The conservation of particle number gives

fodn + nNxdv = 0 6.21)

A sound wave involves adiabatic compression, hence no change in entropy. Thus

-pdn + ndr - rdn =0. (6.22)

But we also have, from ¥, T™ = O (keeping only terms to first order in o) that
Np _
'"td%pﬂ =0. (6.23)
Now, supposing that dr (the change in internal energy) » | dp, we have
1 Nr 1 -2eno

ﬂtd?/ + I—pTr = ﬂt(ﬁ —N(; ~=0 (624)

which, together with Eq. 6.21, yields the wave equation
2

Tan - LR2en = 0. (6.25)

it !
We can therefore interpret the square of the sound velocity as | ! (in units of ¢). For a gas of
ultrarelativistic particles, | = 3, hence

Ugung /¢ = O . (6.26)

t  See, e.g., Weinberg, §2.10.
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