
The energy-momentum tensor

Reading: Ohanian, §2.4, 2.5 

In this Chapter and subsequently, we shall follow the convention c=1.

Currents 
The equation of current conservation (electrical, particle number, probability or whatever) is 

∂ρ  +  ∇ ⋅ j
→

  =  0 . (6.1) 

Written in 4-dimensional notation, this is
∂µ Jµ  =  0 , (6.2) 

where ∂µ  ≡  
∂

∂xµ . Because it is the contraction of 2 tensor indices, and because we already know that

∂µ transforms as a covariant 4-vector), we see that Eq. 6.1 would be manifestly Lorentz invariant if

Jµ were a contravariant 4-vector (more precisely, a vector density; but we shall leave this detail for a
future lecture).

Of course, something as basic as a conservation law must be Lorentz invariant----that is, it cannot
depend on the frame within which we make our observations. To prove it is so we must determine
that Jµ is indeed a 4-vector.

Consider the density for a point particle located at ξ
→

 (t):

ρ(r→ , t)  =  δ(r→  −  ξ
→

 (t)) (6.3) 

Its time derivative is

∂t ρ  =  − 
dξ

→

dt
 ⋅ ∇δ(r→  −  ξ

→
 (t))  =  − ∇ ⋅ 





dξ
→

dt
 δ(r→  −  ξ

→
 (t))





(6.4) 

or

j
→

 (r→ , t)  =  δ(r→  −  ξ
→

 (t))  
dξ

→

dt
  ≡  δ(r→  −  ξ

→
 (t)) u→(t) . (6.5) 

Now, as we have seen, it is possible to define the proper time τ as a function of t----and vice versa----by
integrating the equation 

dτ  =  dt √1 − u→2  , (6.6) 

so, defining ξ0(τ)  =  t(τ), we can rewrite ρ and j
→

 in the combined form

Jµ (r→ ,  t)  =  ∫ dτ  δ(3)(r→  −  ξ
→

(t)) δ(t − ξ0(τ))  
dξµ (τ)

dτ
 . (6.7) 
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Since dτ is manifestly a scalar under Lorentz transformation, and since 
dξµ (τ)

dτ
 is manifestly a

contravariant 4-vector, it remains only to show that

δ(4)
xµ  −  ξµ(τ)  ≡  δ(3)(r→  −  ξ

→
(t)) δ(t − ξ0(τ))

is a Lorentz invariant density. 

To do this we note that 

∫ d4x  δ(4)
xµ  −  ξµ(τ)  =  1 , 

(which is the same in any coordinate system!) so all we have left to show is that the 4-dimensional
volume element d4x is Lorentz invariant. But this is easy: in our special case, 

d4x  =  dy dz dx dt
d4x’  =  dy’ dz’ dx’ dt’  =  dy dz dx’ dt’ .

Hence we must show dx dt  =  dx’ dt’.

Now, when changing variables of integration, we may write

dx’ dt’  =  




∂(x’, t’)
∂(x, t)




 dx dt . (6.8) 

The Jacobian, of the transformation





∂(x’, t’)
∂(x, t)




  =  det 











∂x’/∂x

∂t’/∂x
      

∂x’/∂t

∂t’/∂t










  =  det 








γ

−γv
      

−γv

γ








                     =  γ2 (1 − v2) = 1 .

(6.9)

Hence, dx’ dt’  =  dx dt , and so Jµ is indeed a 4-vector with respect to Lorentz transformations. 

Energy-momentum tensor 
We now consider the object (for a point particle of mass m) 

Tµν (r→ ,  t)  =  m ∫ dτ  δ(4)
xµ  −  ξµ(τ)  

dξµ (τ)
dτ

  
dξν (τ)

dτ
 . (6.10) 

Manifestly, again, this is a second-rank contravariant tensor (density) with respect to Lorentz
transformation. We now want to consider its physical meaning. 

First of all, we see that
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∂µ Tµν (r→ ,  t)  =  m ∫ dτ  
dξµ (τ)

dτ
  

dξν (τ)
dτ

  ∂µ δ(4)
xµ  −  ξµ(τ)

=  −m ∫ dτ  
dξν (τ)

dτ
  

d
dτ

 δ(4)
xµ  −  ξµ(τ) (6.11) 

or, since for a free particle, 
d2ξµ(τ)

dτ2   =  0 , we find upon integrating by parts and discarding the

end-point contribution,

∂µ Tµν  =  m ∫ dτ  δ(4)
xµ  −  ξµ(τ)  

d2ξν (τ)
dτ2   =  0 . (6.12) 

That is, Tµν is conserved. 

Clearly, Tµ0 is a conserved 4-vector density. If we integrate it over volume (over all space) we obtain

∫ d3x  Tµ0  =  m 
dξµ

dτ
  =  pµ . (6.13) 

Hence we can interpret Tµ0 as the 4-momentum density of a point particle. 

The tensor Tµν is called the energy-momentum tensor. It is symmetric in µν. 

4-momentum density of a gas 
The energy-momentum tensor of a collection of non-interacting point particles is

Tµν (r→ ,  t)  =  ∑ 
k=0

N

 δ(3)(r→  −  ξ
→

k(t))  
pk

µ pk
ν

Ek
(6.14) 

On the other hand, the energy momentum tensor of a perfect fluid has the form† 
Tµν  =  Uµ Uν (ρ + p)  −  p ηµν (6.15) 

where Uµ is the 4-velocity of the rest-frame of the fluid with respect to the observer’s frame (the
‘‘Laboratory’’). The parameters ρ and p are the ‘‘proper’’ energy density and pressure, respectively. 

This means that for a relativistic perfect gas in its rest frame, 
Tij  =  p δij

T00  =  ρ
(6.16)

and therefore, in this frame,
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p  =  
1
3

  ∑ 
k=0

N

  δ(3)(r→  −  ξ
→

k(t))  
p→k ⋅ p

→
k

Ek
 , (6.17) 

ρ  =  ∑ 
k=0

N

  δ(3)(r→  −  ξ
→

k(t))  Ek . (6.18)

For any gas, p  ≤  1
3
 ρ ; for an ultra-relativistic gas (for example, a gas of photons) 

p  =  1
3
 ρ . (6.19) 

Sound in an ultrarelativistic gas
Eq. 6.19 has the following interesting consequence† for the propagation of sound: from the second
law of thermodynamics, if n is the proper particle-number density and σ is the proper entropy, then

kTdσ  =  p d



1
n




  +  d





ρ
n




 , (6.20) 

where k is Boltzmann’s constant. We consider small disturbances δρ, δp, δn and δv→ to the average
values of ρ, n, p, and v→  (=0). The conservation of particle number gives 

∂t δn  +  n ∇ ⋅ δv→  =  0 (6.21) 

A sound wave involves adiabatic compression, hence no change in entropy. Thus 
−pδn  +  nδρ  −  ρδn  =  0 . (6.22) 

But we also have, from ∂µ Tµν  =  0 (keeping only terms to first order in δv→) that 

∂t δv→  +  
∇p

p + ρ
  =  0 . (6.23) 

Now, supposing that δρ (the change in internal energy) ≈ λ δp, we have 

∂t δv→  +  
1
λ

 
∇ρ

p + ρ
  =  ∂t δv→  +  

1
λ

 ∇




δn
n




  =  0 (6.24) 

which, together with Eq. 6.21, yields the wave equation 
∂2

∂t2
 δn  −  

1
λ

 ∇2 δn  =  0 . (6.25) 

We can therefore interpret the square of the sound velocity as λ−1 (in units of c). For a gas of
ultrarelativistic particles, λ = 3, hence

usound /c  =  √ 1⁄3  . (6.26) 
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