
The variational approach to dynamics 

Lightning review of nonrelativistic mechanics 
Hamilton’s principle of Least Action (PLA): 

A ({q})  =  ∫  
tA

 tB
 dt L(q, q

.
, t) (7.1) 

A is a functional of q(t), where q(t) stands for all the (generalized) coordinates of a physical system. 

The Principle of Least Action states that
δA

δq(t)
  =  0 (7.2) 

i.e. the physical trajectory makes the action stationary with respect to small deviations δq(t) about
the physical trajectory, subject to 

δq(tA)  =  δq(tB)  =  0 . (7.3) 

The function L(q, q
.
, t) is called the Lagrangian of the system.  If we know the Lagrangian we can in

principle know all there is to know about a system.

Digression
How does the PLA work? We calculate the difference

δA  =  A ({q + δq})  −  A ({q})  =  ∫  
tA

 tB
 dt 


L(q + δq, q

.
 + d

dt
δq, t)  −  L(q, q

.
, t)



=  ∫  
tA

 tB
 dt 




δq(t) 

∂L
∂q

  +  d
dt

δq(t) 
∂L
∂q

.  



 . (7.4)

Upon integrating the term in d
dt

δq(t) once by parts we find
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 dt δq(t) 





∂L
∂q

  −  
d
dt

 




∂L
∂q

. 


 



  +  




δq(t) 





∂L
∂q

. 


 


tA

tB

=  ∫  
tA

 tB
 dt δq(t) 





∂L
∂q

  −  
d
dt

 




∂L
∂q

. 


 



  , (7.5)

where we have used Eq. 7.3 to drop the end point contribution.

Since δq(t) is, subject to the constraint Eq. 7.3, an arbitrary function, in order for the integral in
Eq. 7.5 to vanish, the integrand must vanish, i.e.
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∂L
∂q

  −  
d
dt

 




∂L
∂q

.



  =  0 . (7.6)

Equation 7.6 is known as the Euler-Lagrange equation. If there is more than one generalized
coordinate----for example, a particle moving in 3-dimensional space will be described by three position
coordinates 


x(t), y(t), z(t)


----there is an Euler-Lagrange equation arising from the (independent)

variation of each coordinate, making three in this case.
End of digression 

The Lagrangian of a nonrelativistic particle is 

L  =  1
2
 mv→2  −  V(x→) (7.7) 

for which the (three) Euler-Lagrange equations yield Newton’s 3rd Law: 

m 
dv→

dt
  =  −∇ V(x→) . (7.8) 

Lorentz invariant mechanics 
The Lagrangian of a free particle must be such as to give rise to a scalar action. In the nonrelativistic
case, the action is indeed a scalar under Galilean transformations, hence the resulting equations of
motion respect the Galilean Principle of Relativity. Clearly, if we wish our equations of motion to
respect the Principle of Relativity as formulated by Einstein (that is, with respect to Lorentz
transformations), we had better choose an action that is a Lorentz scalar. This requirement is actually
very restricting. For a free particle, the only scalar quantity is the proper time,

τ  =  ∫ dt √ 1 − v→2/c2  .

Thus we choose for our Lagrangian
L  =  −mc2 √ 1 − v→2/c2 (7.9) 

since this produces the (manifestly) Lorentz invariant action

A  =  ∫ dt L  =  −mc2 ∫ dt √ 1 − v→2/c2   ≡  −mc2 ∫ dτ . (7.10) 

Now, what about a particle that is not free:  how can we express potential energy in a Lorentz invariant
manner? 

Clearly, we must add to −mc2 quantities that are scalars with respect to Lorentz transformation, but
functions of the coordinates and/or velocity of the particle.  Such quantities would have the form 

ϕ(x)
uµ Aµ (x)

uµ uν Bµν (x)
…

where ϕ is a Lorentz scalar, Aµ a covariant 4-vector, etc. 
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Looking ahead for a moment, consider the electromagnetic 4-vector potential, Aµ  =  (ϕ, A
→

 ).  For
the moment, let us work in a frame where A

→
  = 0. We know that, nonrelativistically, the Lagrangian

takes the form 

L  =  −mc2  +  1
2
 mv→2  −  Q ϕ( x→(t)) (7.11)

(i.e., if we did not include the −mc2, it would just be the familiar T -- V).

But

Q ϕ dt  =  Q ϕ 
dt
dτ

 dτ  ≡  Q A0 u0 dτ (7.12) 

so the proper Lorentz invariant form of the potential energy must be 

Vdt  =  Q 

ϕ − v→ ⋅ A

→
  

 dt  =  Q uµ Aµ dτ . (7.13) 

The Euler-Lagrange equations are then obtained by varying with respect to xµ subject to the

(holonomic) constraint that uµ uµ  =  1. 

The relativistic Lagrangian of a charged point particle in a 4-vector potential is then
L  =  −m √ uµ uµ   −  Q uµ Aµ

so 
∂L

∂uµ  =  −Q Aµ  −  
muµ

√ uµ uµ

and 
∂L

∂xµ  =  −Q uν ∂µ Aν ,

giving the Euler-Lagrange equation 

−Q uν ∂µ Aν  −  
d
dτ

 



−Q Aµ  −  

muµ

√ uµ uµ

 



  =  0 ,

or since 
d
dτ

 uµ uµ  =  0 (because of the constraint uµ uµ  =  1) 

m 
duµ

dτ
  =  Q uν 


∂µ Aν  −  ∂ν Aµ


 . (7.14) 

Eq. 7.14 is just Newton’s 3rd law for a charged particle in an external electromagnetic field. The
antisymmetric tensor 

Fµν  =  ∂µ Aν  −  ∂ν Aµ  (7.15) 

is called the electromagnetic tensor, and its six nonvanishing components are actually the E
→

 and B
→

fields of Maxwell’s equations. 
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We see that for µ  =  1, 2, 3
dpk

dτ
  =  

−dpk

dτ
  =  

−dpk

dt
 
dt
dτ

  =  Q u0 Fk0  +  Q ul Fkl  ≡  Q 
dt
dτ

 

Fk0  +  vl Fkl

or 
dpk

dt
  ≡  −Q 


Fk0  +  vl Fkl

 . (7.16) 

Eq. 7.16 has to agree with Newton’s laws, with the force given by the Lorentz force 

f
→

  =  Q 

E
→

  +  v→ × B
→

  


so we can identify −Fk0 with E
→

.  Is this correct?  We see that 

−Fk0  =  −∇k A0  +  
d
dt

 

ηkk A

k

  =  −∇k A0  −  

d
dt

 Ak (7.17) 

so indeed it is Ek. 

What about −Q vl Fkl ?  Consider the k=3 component for definiteness: 

v1 F31  +  v2 F32  +  v3 F33  ≡  v1 F31  +  v2 F32 .

But F31  =  −∂z Ax  +  ∂x Az  =  −B2 (we have used A1  ≡  Ax , etc. to make contact wth the Cartesian

3-dimensional notation); and similarly, F32  =  B1, so we easily see 

−Q vj F3j  =  Q v1 B2  −  v2 B1
  =  Q (v→ × B

→
  )

z
 . 

Thus the space components of Eq. 7.14 give Newton’s 3rd law, with the force given by the Lorentz
force. What about the time component? 

dp0

dt
  =  Q vk F0k  =  Q v→ ⋅ E

→
 . (7.18) 

This is just the statement that

dp0  =  dx→ ⋅ f
→

(7.19)

which we already know is true from the relation between work and energy. 
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