
Variational methods in mechanics and E&M

Electrodynamics in Minkowski space 
Recall we found the equation of motion of a particle in a Lorentz vector field

dpµ

dτ
  =  QUν Fµν (8.1)

where
Fµν  =  ∂µ Aν  −  ∂ν Aµ (8.2) 

is called the electromagnetic tensor, and its 6 components are actually the E
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The interaction term in the Lagrangian (from which we derived Eq. 8.1) was 

Lint  =  −Q Uµ Aµ (x→(t), t) (8.3)

i.e. the vector field Aµ is evaluated at the instantaneous position of the particle. 

Eq. 8.3 can be rewritten as 

Lint  =  − ∫ d3x Jµ  (x→, t) Aµ (x→, t) (8.4) 

where

Jµ(x)  =  ∫ dτ Q δ(4) (x − ξ(τ)) 
dξµ

dτ
(8.5) 

is the electromagnetic current density. Clearly, the current density for a collection of point particles
is just 

Jµ(x)  =  ∫ dτ ∑ 
n

Qn δ
(4) (x − ξn(τ)) 

dξn
µ

dτ
 . (8.6)

From its very form, ∂µ Jµ  =  0.  

Now, suppose we want to derive Maxwell’s equations
of the electromagnetic field (displayed at the right)
from an action principle: first we must write them in
Lorentz covariant form. 
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From
Ek  =  F0k  =  −F0k

B j  =  −Fkl  =  −Fkl (8.7) 

(j, k, l are cyclic permutations of 1,2,3), we recover the Lorentz force

f k  =  
dpk

dt
  =  

dτ
dt

 (Q Uν F kν)  =  −Q F0k  −  Q ∑ 
l=1

3

 ul Fkl  =  Q Ek  +  Q [u→ × B
→
]

 k
 .

The first two (the pair with sources) of Maxwell’s equations can then be written

∂0 F00  +  ∂k F
k0  =  ∇ ⋅ E

→
  =  4πρ  =  4πJ0

∂0 F0k  +  ∂l F
lk  =  −  

∂Ek

∂t
  +  εklj ∂l B

 j  =  4πJk

∴  ∂µ Fµν  =  4πJν

(8.8) 

Eq. 8.8 has the form of a Lorentz covariant equation, since ∂µ and Jν are both 4-vectors under Lorentz
transformation. 

The second (homogeneous) pair of Maxwell’s equations can be written 
εµνσλ ∂ν Fσλ  =  0 (8.9) 

where εµνσλ is the totally antisymmetric (with respect to any pair of indices) tensor, defined so that
ε0123  =  1. Non-zero elements are ±1, obviously. 

Clearly Eq. 8.9 and Eq. 8.8 are covariant iff Fµν is a tensor. Is it? Anyone? 

To show Fµν is a tensor, it is enough to show Aµ is a vector. How do we do it? Go back to Maxwell’s
equations and let 

B
→

  =  ∇ × A
→

E
→

  =  −∇ A0  −  ∂t A
→ (8.10) 

Then the last two Maxwell’s equations are automatically satisfied, and the first two give 

∂µ ∂µ Aν  =  4πJν  +  ∂ν Λ (8.11) 

where 

Λ  =  ∂µ Aµ  =  ∂t A
0  +  ∇ ⋅ A

→
 . (8.12) 

Clearly we can always add some ∇ Λ
~

 to A
→

 because this can’t change B
→

; and we can then add −∂t Λ
~

to E
→

 because then E
→

 doesn’t change. The result is called a gauge transformation. Then 
Λ  →  Λ  −  ∂µ ∂µ Λ

~
 .
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Since Λ
~

 is clearly a scalar, we can always choose Λ = 0 (if it isn’t 0, find an appropriate Λ
~

 that makes
it so). If we do this, the choice is manifestly Lorentz invariant and so

∂µ ∂µ Aν  =  4πJν . (8.13) 

But since Jµ is a 4-vector, Aµ must also be one. Hence Fµν is a tensor. QED. 

Principle of Least Action 
To have a Lorentz invariant action, we must write 

A  =  ∫ d4x L Aµ, ∂ν Aµ
 (8.14) 

where L is a scalar under Lorentz transformation. It has to be (at least) quadratic in Aµ and have no

more than first derivatives of Aµ, in order to give Maxwell’s equations when varied. 

The possibilities are
Fµν Fµν

Aµ Aµ



∂µ Aµ


2

…

Only Fµν Fµνis gauge invariant, hence it is the only possible term†. In the homework problems we
saw that

Fµν Fµν  =  2( B
→

 ⋅ B
→

  −  E
→

 ⋅ E
→

  ) . (8.15) 

That is, 
L  =  const × Fµν Fµν .

What is the constant? We now figure this out. The energy of a system can be derived from the
Lagrangian by the transformation 

H  =  q
.
 
∂L
∂q

.   −  L . (8.16) 

H is called the Hamiltonian. The analog for deriving Hamiltonian density H from a Lagrangian density
is

Gravitation and Cosmology
Lecture 8: Variational methods in mechanics and E&M

33

† …actually, the term εµνσλ Fµν Fσλ is gauge-invariant, but it has odd parity under reflections. Since
the electromagnetic interaction conserves parity, such a term would have to appear to the second
power, but this would lead to a nonlinear electromagnetic theory, for which we have no
experimental evidence at the macroscopic level.



H  =  q
.
(x) 

∂L
∂q

.
(x)

  −  L , (8.17) 

where, of course, if there is more than one field q(x), we sum over all. Now specialize to EM fields in
vacuum----in the absence of sources we can choose A0  =  0, so find 

L  =  2 × const × 

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(8.18) 

or

H  =  −2 × const ×  ( B
→

  )
2

  +  ( E
→

  )
2


 . (8.19)

But we also know, from integrating the work done moving charges in electric and magnetic fields,
that the energy density of the electromagnetic field is 

U  =  
1

8π
  ( B

→
  )

2

  +  ( E
→

  )
2


 , (8.20) 

hence

const  =  
−1
16π

 ,

LEM  =  
−1
16π

 ( Fµν Fµν)  .

 

The Euler-Lagrange equations for the electromagnetic  field are thus (by an easy generalization from
the particle case)

∂µ 




∂L
∂Aν, µ




  −  

∂L
∂Aν

  =  0 ; (8.21) 

taking the sum of pure-field and interaction Lagrangians to be

L  =  
−1
16π

 ( Fµν Fµν)  −  JνAν , (8.22) 

we find, as before, 
∂µ Fµν  =  4πJν . (8.23) 

Gravitation and Cosmology
Principle of Least Action 

34


