Variational methods in mechanics and E\&M

Electrodynamics in Minkowski space

Recall we found the equation of motion of a particle in a Lorentz vector field

$$
\begin{equation*}
\frac{d p_{\mu}}{d \tau}=Q U^{v} F_{\mu \nu} \tag{8.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{8.2}
\end{equation*}
$$

is called the electromagnetic tensor, and its 6 components are actually the \vec{E} and \vec{B} fields:

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E^{1} & E^{2} & E^{3} \\
-E^{1} & 0 & -B^{3} & B^{2} \\
-E^{2} & B^{3} & 0 & -B^{1} \\
-E^{3} & -B^{2} & B^{1} & 0
\end{array}\right) .
$$

The interaction term in the Lagrangian (from which we derived Eq. 8.1) was

$$
\begin{equation*}
\mathrm{L}_{\text {int }}=-Q U^{\mu} \mathrm{A}_{\mu}(\overrightarrow{\mathrm{x}}(\mathrm{t}), \mathrm{t}) \tag{8.3}
\end{equation*}
$$

i.e. the vector field A_{μ} is evaluated at the instantaneous position of the particle.

Eq. 8.3 can be rewritten as

$$
\begin{equation*}
L_{\text {int }}=-\int d^{3} x J^{\mu}(\vec{x}, t) A_{\mu}(\vec{x}, t) \tag{8.4}
\end{equation*}
$$

where

$$
\begin{equation*}
J^{\mu}(x)=\int d \tau Q \delta^{(4)}(x-\xi(\tau)) \frac{d \xi^{\mu}}{d \tau} \tag{8.5}
\end{equation*}
$$

is the electromagnetic current density. Clearly, the current density for a collection of point particles is just

$$
\begin{equation*}
J^{\mu}(X)=\int d \tau \sum_{n} Q_{n} \delta^{(4)}\left(X-\xi_{n}(\tau)\right) \frac{d \xi_{n}^{\mu}}{d \tau} \tag{8.6}
\end{equation*}
$$

From its very form, $\partial_{\mu} J^{\mu}=0$.

Now, suppose we want to derive Maxwell's equations of the electromagnetic field (displayed at the right) from an action principle: first we must write them in Lorentz covariant form.

M axwell's Equations

$\nabla \cdot \overrightarrow{\mathrm{E}}=4 \pi \rho$
$\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{\jmath}+\frac{1}{c} \vec{E}$
$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial \mathrm{t}}=0$

G ravitation and C osmology

Electrodynamics in Minkowski space

From

$$
\begin{align*}
& E^{\mathrm{k}}=\mathrm{F}_{\mathrm{Ok}}=-\mathrm{F}^{\mathrm{ok}} \\
& \mathrm{~B}^{\mathrm{j}}=-\mathrm{F}_{\mathrm{kl}}=-\mathrm{F}^{\mathrm{kl}} \tag{8.7}
\end{align*}
$$

(j, k, I are cyclic permutations of $1,2,3$), we recover the Lorentz force

$$
f^{k}=\frac{d p^{k}}{d t}=\frac{d \tau}{d t}\left(Q U_{v} F^{k v}\right)=-Q F^{0 k}-Q \sum_{l=1}^{3} u^{\prime} F^{k l}=Q E^{k}+Q\left[\vec{u} \times \vec{B}^{k}\right]^{k}
$$

The first two (the pair with sources) of Maxwell's equations can then be written

$$
\begin{align*}
& \partial_{0} F^{00}+\partial_{k} F^{k 0}=\nabla \cdot \vec{E}=4 \pi \rho=4 \pi j^{0} \\
& \partial_{0} F^{0 k}+\partial_{1} F^{k}=-\frac{\partial E^{k}}{\partial t}+\varepsilon^{k l j} \partial_{\mid} B^{j}=4 \pi j^{k} \tag{8.8}\\
& \therefore \partial_{\mu} F^{\mu \nu}=4 \pi j^{\nu}
\end{align*}
$$

Eq. 8.8 has the form of a Lorentz covariant equation, since ∂_{μ} and J^{ν} are both 4 -vectors under Lorentz transformation.

The second (homogeneous) pair of Maxwell's equations can be written

$$
\begin{equation*}
\varepsilon^{\mu v \sigma \lambda} \partial_{v} F_{\sigma \lambda}=0 \tag{8.9}
\end{equation*}
$$

where $\varepsilon^{\mu v \sigma \lambda}$ is the totally antisymmetric (with respect to any pair of indices) tensor, defined so that $\varepsilon^{0123}=1$. Non-zero elements are ± 1, obviously.

Clearly Eq. 8.9 and Eq. 8.8 are covariant iff $\mathrm{F}_{\mu \nu}$ is a tensor. Is it? Anyone?
To show $F_{\mu \nu}$ is a tensor, it is enough to show A_{μ} is a vector. How do we do it? Go back to Maxwell's equations and let

$$
\begin{align*}
& \vec{B}=\nabla \times \vec{A} \\
& \vec{E}=-\nabla A^{0}-\partial_{t} \vec{A} \tag{8.10}
\end{align*}
$$

Then the last two Maxwell's equations are automatically satisfied, and the first two give

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} A^{v}=4 \pi J^{v}+\partial^{v} \Lambda \tag{8.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\partial_{\mu} \mathrm{A}^{\mu}=\partial_{\mathrm{t}} \mathrm{~A}^{0}+\nabla \cdot \overrightarrow{\mathrm{A}} . \tag{8.12}
\end{equation*}
$$

Clearly we can always add some $\nabla \tilde{\Lambda}$ to \vec{A} because this can't change \vec{B}; and we can then add $-\partial_{\mathrm{t}} \tilde{\Lambda}$ to \vec{E} because then \vec{E} doesn't change. The result is called a gauge transformation. Then

$$
\Lambda \rightarrow \Lambda-\partial_{\mu} \partial^{\mu} \widetilde{\Lambda}
$$

G ravitation and C osmology

Lecture 8: Variational methods in mechanics and E\&M

Since $\tilde{\Lambda}$ is clearly a scalar, we can always choose $\Lambda=0$ (if it isn't 0 , find an appropriate $\widetilde{\Lambda}$ that makes it so). If we do this, the choice is manifestly Lorentz invariant and so

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} A^{v}=4 \pi J^{v} . \tag{8.13}
\end{equation*}
$$

But since J^{μ} is a 4 -vector, A^{μ} must also be one. Hence $\mathrm{F}^{\mu v}$ is a tensor. QED.

Principle of Least Action

To have a Lorentz invariant action, we must write

$$
\begin{equation*}
A=\int d^{4} x L\left(A^{\mu}, \partial_{v} A^{\mu}\right) \tag{8.14}
\end{equation*}
$$

where L is a scalar under Lorentz transformation. It has to be (at least) quadratic in A_{μ} and have no more than first derivatives of A^{μ}, in order to give Maxwell's equations when varied.

The possibilities are

$$
\begin{aligned}
& F^{\mu \nu} F_{\mu v} \\
& A^{\mu} A_{\mu} \\
& \left(\partial_{\mu} A^{\mu}\right)^{2}
\end{aligned}
$$

Only $F^{\mu \nu} F_{\mu v}$ is gauge invariant, hence it is the only possible term ${ }^{\dagger}$. In the homework problems we saw that

$$
\begin{equation*}
F^{\mu v} F_{\mu \nu}=2(\vec{B} \cdot \vec{B}-\vec{E} \cdot \vec{E}) . \tag{8.15}
\end{equation*}
$$

That is,
$L=$ const $\times F^{\mu \nu} F_{\mu v}$.

What is the constant? We now figure this out. The energy of a system can be derived from the Lagrangian by the transformation

$$
\begin{equation*}
H=\dot{q} \frac{\partial L}{\partial \dot{q}}-L . \tag{8.16}
\end{equation*}
$$

H is called the H amiltonian. The analog for deriving Hamiltonian density H from a Lagrangian density is

[^0]
G ravitation and C osmology

Principle of Least Action

$$
\begin{equation*}
H=\dot{q}(x) \frac{\partial L}{\partial \dot{q}(x)}-L, \tag{8.17}
\end{equation*}
$$

where, of course, if there is more than one field $q(x)$, we sum over all. Now specialize to EM fields in vacuum---in the absence of sources we can choose $\mathrm{A}^{0}=0$, so find

$$
\begin{equation*}
L=2 \times \text { const } \times\left[(\nabla \times \vec{A})^{2}-\left(\partial_{t} \vec{A}\right)^{2}\right] \tag{8.18}
\end{equation*}
$$

or

$$
\begin{equation*}
H=-2 \times \text { const } \times\left[(\vec{B})^{2}+(\vec{E})^{2}\right] . \tag{8.19}
\end{equation*}
$$

But we also know, from integrating the work done moving charges in electric and magnetic fields, that the energy density of the electromagnetic field is

$$
\begin{equation*}
U=\frac{1}{8 \pi}\left[(\vec{B})^{2}+(\vec{E})^{2}\right] \tag{8.20}
\end{equation*}
$$

hence

$$
\begin{aligned}
& \text { const }=\frac{-1}{16 \pi} \\
& L_{E M}=\frac{-1}{16 \pi}\left(F^{\mu \nu} F_{\mu v}\right) .
\end{aligned}
$$

The Euler-Lagrange equations for the electromagnetic field are thus (by an easy generalization from the particle case)

$$
\begin{equation*}
\partial_{\mu}\left(\frac{\partial L}{\partial A_{v, \mu}}\right)-\frac{\partial L}{\partial A_{v}}=0 ; \tag{8.21}
\end{equation*}
$$

taking the sum of pure-field and interaction Lagrangians to be

$$
\begin{equation*}
L=\frac{-1}{16 \pi}\left(F^{\mu \nu} F_{\mu \nu}\right)-J^{\nu} A_{v} \tag{8.22}
\end{equation*}
$$

we find, as before,

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu} . \tag{8.23}
\end{equation*}
$$

[^0]: $\dagger \quad \ldots$.actually, the term $\varepsilon^{\mu v \sigma \lambda} F_{\mu v} F_{\sigma \lambda}$ is gauge-invariant, but it has odd parity under reflections. Since the electromagnetic interaction conserves parity, such a term would have to appear to the second power, but this would lead to a nonlinear electromagnetic theory, for which we have no experimental evidence at the macroscopic level.

