
Linear field approximation to gravitation II 

Gravitational field of a distribution of matter 
Recall that we had derived the field equation, by analogy with electromagnetism, 

∂κ∂κ hµν  −  ∂µ∂κ hκν + ∂ν∂κ hµκ
  +  ηµν ∂κ ∂λ hκλ  +    

+  ∂µ∂ν − ηµν ∂κ∂κ

 hλ

λ  =  −KTµν
(10.15) 

Eq. 10.15 is invariant under the gauge transformation 

hµν  →  hµν  +  
1
2

 ∂µΛν + ∂ν Λµ
  =  h

~
 µν (10.16) 

Assume the gauge condition

∂µ hµν − 1
2
 ηµν h   =  0 (11.1) 

(we can always pick a gauge function Λ(x) such that this is so). 

Then the field equ’ns become

∂κ∂κ hµν  −  1
2
 ηµν h   =  −KTµν . (11.2) 

Let 

ζµν   =
df

   hµν  −  1
2
 ηµν h

so that 

ζ  =  h  −  1
2
 × 4 × h  =  −h

ζµν  =  hµν  +  1
2
 ηµν ζ

hµν  =  ζµν  −  1
2
 ηµν ζ  .

It is much easier to calculate ζ from
∂κ∂κ ζµν  =  −KTµν (11.3) 

than hµν from Eq. 11.2. 

Example
We shall now calculate the gravitational field of a point mass. The energy-momentum tensor of a
point particle at rest is
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Tµν  =  













Mδ(3)(x→)
0
0
0

    

0
0
0
0

    

0
0
0
0

    

0
0
0
0

  













(11.4) 

giving

−∇2 ζ00 (x→)  =  −KM δ(3) (x→) (11.5) 

so

ζ00 (x→)  =  −  
KM

4π|x→|
 . (11.6) 

We see that ζ  =  ζ00, so that h00  =  1
2
 ζ00. 

Equation of motion of a test particle 
Newton’s 2nd Law for a test particle† of mass m in the above field is

dp→

dt
  =  −∇ 





−GMm
|x→|





(11.7) 

or 
d
dt

 

m

u→

√1 − u→ ⋅ u→



  =  −m 

4πG
K

 ∇ ζ00  =  −m 
8πG

K
 ∇ h00

which could be expressed as 

δ ∫ dt L(x→ (t), u→ (t) )  =  0

where 

This is no good! The Lagrangian (times dt) is suppose to be a Lorentz scalar. How can we make the
h00 term into a scalar? 

Clearly the right way to do this is

h00 dt  →  hµν UµUν dτ . (11.8)

It will then be convenient to rewrite tha action as

L  =  −m √ 1  −   u→ ⋅ u→   −m h00 
8πG

K
 .

Scalar Tensor
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† A ‘‘test particle’’ is one whose mass is so small we may neglect its contribution to the graviational
field.



 

A  →   − ∫ dτ 


1
2
 m ηµν  +  m 

16πG
2K

 hµν


 UµUν . (11.9)

If we choose K  =  16πG and call 

ηµν  +  hµν  =
df

   gµν, 

we see that

L  =  − 1
2
 m ηµν  +  

16πG
K

 hµν
 UµUν

has the form of a metric in a curved space. This is one way we can recognize that gravitation can be
identified with geometry. 

Why gravitation ⇔ geometry
The Principle of Equivalence says that it is impossible to distinguish gravitational effects from
accelerations. Consider a rotating disk. According to Special Relativity, its circumference (as
measured by a stationary observer) will be (g  =  Rω2) 

2πR √ 1  −  (Rω)2/c2   =  2πR √ 1  −  gR/c2  .

However, the radius is always perpendicular to the velocity, hence is the same in the stationary system
as in the rest frame of the disk. In consequence, the geometrical constant π’ measured in an
accelerated frame must differ from π in an unaccelerated frame: 

π’  =  π √ 1  −  gR/c2  . 

If we express the effect in terms of the centrifugal potential energy per unit mass, 

ϕ  =  1
2
 (Rω)

2

we have
π’  =  π √ 1  −  2ϕ/c2  . (11.10) 

That is, a gravitational potential affects the geometry (because we cannot tell one kind of acceleration
from another). 

Relativistic motion in a gravitational field
We now consider the relativistic equation of motion of a test particle: 

d
dτ

 




∂L
∂Uµ




  −  

∂L
∂ξµ

  =  0 . (11.11) 

Ignoring the factor 1
2
 m,

d
dτ

 gµν Uν

  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 . (11.12) 

Now, 
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d
dτ

 gµν Uν

  =  

d
dτ

 Uµ  +  hµν 
d
dτ

 Uν  +  UκUν 
∂hκν

∂ξµ
(11.13) 

so, to leading order (in gravitational problems, kinetic and potential energies are usually comparable,

so hµν 
d
dτ

 Uν is a correction of order ζ2),

d
dτ

 Uµ  +  UκUν 
∂hκν

∂ξκ
  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 . (11.14) 

In the next lecture we shall look at some consequences of Eq. 11.14, both for particle motion and
for scattering light by a gravitational field. 
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