Gravitation and Cosmology
Lecture 23: Solution of the Keppler problem

Solution of the Keppler problem

Perihelion precession
The equation for the orbit of a test particle in the field of a point gravitating mass (Schwarzschild

metric) is
%)
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By changing variables to » = —we find an equation of form

du %)

2 = i%—uz + 2au — b + 2MG143E . (23.1)

Clearly the expression within the square root can be factored (since it is cubic, it has 3 roots;
moreover, since the number of sign changes among the coefficients is 3, the roots are all real;
finally, the roots are all positive since it starts out negative at #=0 and becomes positive for large
u, whereas for #<0 it is negative definite), giving

~u® + 2au - b + 2MGu® = %g - uHEt - M<HHX - ZMGMH (23.2)
wherea = 1 - 2MG H¢< + M>H.

As the test body (planet) moves around its orbit, the (inverse) radius # will remain between the
limits #_ and %, expected to be close to their Newtonian values because 2MGu,, is very small.

The angle p—measured from #_ —will increase from O to whatever value it has when u = ., .

The easiest way to calculate the change of angle uses the change of variable

u = %%> - %<HCOSX + %%g + M<H (23.3)
leading to
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As the variable x changes by 2T, the planet moves around once in its orbit. The Newtonian case
corresponds to replacing the right side of 23.5 by unity (1), giving Ap = Ax = 21. (Of course
u_ and #. must be replaced with their Newtonian values also.)

However, the change in X including the corrections of Einstein’s theory of gravitation is
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The amount, M Where L1, _|:|15 the “semi latus rectum”—by which A differs
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from 271, measures the precession of the orbit in space, per revolution. The difference is positive,

Ap

0

so a planet precesses in the direction of its motion.

Generating approximations via contour integration

The student may legitimately ask, “How did we know to make the specific change of variable
23.32” Of course, one answer is that this was fairly standard in orbital perturbation theory (a
subject more widely taught in Einstein’s time than our own), so this is essentially how Einstein
tackled it. In other words, “Tradition!” But traditional methods, while they must be mastered
by the aspiring theoretical physicist, offer no insight into new problems.

Therefore it seems worthwhiile to digress on another method for generating approximations in
theoretical mechanics. The angular increase in an orbit can be written as an integral

U, Rz
Ad =2 dulu® + 2au — b + 2MGi® . 23.7
0= 2 duf} 0 23.7)
Eq. 23.7 can be re-expressed instructively as a contour integral,
-1/2

0p = dief(u, ~2)(z ~u)ar ~2MGu)

where the closed contour I is as shown below:

|
U, u, u = 1/2MG
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We note the closed curve goes around (counter-clockwise) a dashed line drawn between the
points #_ and #., . To understand why we have drawn the curve this way, and how we will use
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this construction to evaluate (approximately) the integral, we digress briefly on the art of contour
integration.

Contour integration

The method of contour integration is based on Cauchy’s theorem, which states that the integral
around a closed contour I, of a function f(z) that is analytic’ within I and continuous on it is
identically O:

§ rr=0

Cauchy’s theorem is proved in standard books on the theory of functions of a complex variable
such as Whittaker and Watson, A Course of Modern Analysis, 4th ed. (Cambridge University
Press, 1996). Its use inevaluating integrals is detailed in many places, such as Arfken and Weber,

Mathews and Walker, etc.

A contour integral is defined as follows: suppose a closed curve in the complex plane can be
parameterized by z ={(t), 0<t<1.Then

f =] ar % f(z)

What does it mean to say a complex-valued function of a complex variable is analytic at a point
zq in the complex plane? We mean that it can be differentiated in the usual manner:

dfe) _ - feth) = )
dz bl -0 h

where b 1s a complex number whose magnitude |5 | is allowed to become arbitrarily small.

Problem:
. . _ . df(z) . -
Show that if f{x +iy) = a(x,y) + ib(x,y), then 7, cxists iff
% o _
d Ox
(Cauchy-Riemann equations)

ox 9y

+  This term will be defined below.
“...ifand only if...”

-
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Now we come to singularities. These are points where f(z) is not analytic. They come in three
flavors:

» Poles—near asimple pole afunction behaves asf(z) = z? + g(2) . Near apole of order nthe

behavior isf(z) = + 0(2) where nis apositive integer.

R
(z-2)"
» Essential singularities— a function that has an infinite series of poles of orders 1, 2, ... is said to
© —N

have an essential singularity at z, . An exampleise¥? = z Zn—l .
n=0

« Branch cuts—these are like a continuous line of poles. For example, the function

1
@ = [ %= log1-2) - log-2

has a branch cut from 0 to 1 along the real axis. If we define f(2) to be real for negative real z, then

obviougly it is discontinuous across the real axis for 0 < Re(2) < 1 . Another example is 7",
Whenever afunction has adiscontinuity acrossaline, it isimpossibleto define the derivativeinthe
direction perpendicular to that line. So we “ cut” the line of discontinuity out of the plane (that is
the meaning of the dashed line in the figure above) and say the function isanalytic in the cut plane.
To specify such afunction we have to specify its branch cuts and the direction we cut them out. For
example, it would have been equally permissiblein the above logarithmic case to run the cuts from
-0 -, 0 and from 0 - o aong the rea axis. That would define a different, but equally valid
function. Generally we choose branch lines to suit our convenience.

Poles and essential singularities are isolated—one can draw a circle around them (of arbitarily
small radius) and say that outside that circle the function is analytic because its derivative exists.
Branch lines are like a continuous line of poles, hence are not isolated.

Integrals that can be evaluated by contour integration have certain things in common. First is
that the integral is well-defined; second, that it be definite; and third, the range of integration
can be made part of a suitable closed contour, in such a way that the integral along the rest of
the contour either vanishes or can be performed explicitly. Virtually the entire art of contour
integration rests on choosing suitable contours.

We now give two examples. First, consider the definite integral

o dx
! :I—oo 1427

We see that the polynomial in the denominator can be factored into the form

1= gy ]

meaning the function has simple poles at x = #: in the complex plane.

In this case we want a contour that includes the real axis, from =R to +R, plus some part that
closes the contour and on which the integral can be easily evaluated. In this case, the choice
(dictated by experience) is a semi-circle in the upper half of the complex plane, as shown below.
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The integral we want can be written
+R d

. x

I = lim I —

R - o R 1 +x2

Detail

The portion on the semicircle can

—

be represented by letting

, = R® R AT

giving

Vv
Z
S
)

R i R

That is, we can add the contribu-

tion from the large semicircle be-
cause in the limit of large radius,
it goes to 0.

Now the integral is in the form of a contour integral, but the integrand is not analytic everywhere
within the contour. To put it in the form of such an integral we draw a vertical line from the
pointx +iy = —€ +:0 to the point —=¢ + 7(1 - €), a similar line from € + (1 —€)to € +:0,and a
circle of radius € centered at z = 0 + , going clockwise about the pole at 7 and connecting the two
lines. These are shown in the Detail. The total contour integral can now be written

¢ +R[] 0 z'ed
lim O +I O+ I, + lim se—QeZ:o
o w[T-R +€[] e_o 2t 1 — (1-¢g)
€e-0

where we have parameterized z on the little circle as
z=i-igd.

The two contributions from the vertical lines cancel, since the same function is being integrated

alone the same contour in opposite directions, so they have not been displayed explicitly.

The first term clearly becomes the integral we want, the second vanishes in the limit of large R,
and the last term becomes

lim e 6.19 — = lim 0 d—e = -TL

enovam 1l =1+ 28 - €0 ¢ olm2 - e

We are left with 7 — 11 =0, or I = 11(which is well-known to be correct—as can be seen from
the trigonometric substitution x - tan®).

1 dx
How do we do an integral with a branch cut? Consider I= J

0 Jx(1-x)

109



Gravitation and Cosmology
Application to perihelion precession

The function f(z) = H(l - Z)H_l/2 may be defined with a branch cut running from 0 to 1 along the

real axis. If we define the function to be real and equal to as z approaches the cut from

1
V(1 —x)

above, then the integral on a contour
such as shown below vanishes. The
pieces on the extension lines running
above and below the real axis from 1 to
o cancel because the function, as de-
fined, has no discontinuity across the
real axis in that range. The contribu-

tions from the tiny circular end caps
vanish as ¥ , as they must for the
integral to have a meaning at the end-
points (where the integrand blows
up). The function as defined has the
opposite sign when z approaches the

cut from below, hence the contour in-
tegral (whose total value is O, by
Cauchy’s Theorem) becomes

Al . . -l
2] + lim iRMPIBRSCL(1-RMAO = 0.
i Jo R ( )

Now clearly, as we allow R to get larger than 1, the square root of the — sign beomes either —i or
+12. The question is, which is it? Putting aside this question for a moment, we see that for large
R the integrand of the integral on the large circle becomes £1 (plus something that vanishes as
r — ), so the value of this integral becomes + 2TT. In other words the integral we want will have
the value + 1. Obviously, since the integrand is positive, the + sign must be taken. Is there some
way we could have known this a prior:?

—lA .
Consider the imaginary part of the function Hx +7€) (1 —x —2€)[] where € is very small—as
long as x lies between 0 and 1, this imaginary part is proportional to € (2x — 1), hence it is positive

. P %]
forx > Y. By continuity we see that if 72 > 0 >0 the imaginary part of g? (1 -Re® )E must
be positive for R near 1, i.e. we want a factor of +i.

Application to perihelion precession
We now apply this technique to the approximate evaluation of the integral

-1/2

0p = dief(u, =2z ~u.)(or ~2MGu)

We extend the contour I' to include a large circle centered at #_ and integrate around I'. Cauchy’s
theorem assures us the answer is 0. Let us parameterize the circle as

zZ =u.t peZe
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where p is much larger than #, — u_, but much smaller than #; = a/2MG . Then for any p

21 . . . o
Ad + Io ip e de %5 - U, — pelegpeZe %1 - 2MGu,_ - ZMGpele% =0.

If we factor out the - sign as before, we may rewrite this as

A = [ do o - e e_ieg MG MGpe'® 7
(I)—Io |:|]:|_ > D%—Z (s + 2u) - 2 pe%

-1

2m 0 (5 = u) e—iG 0 0
zj el + ———— + ...D% + MG(us + 2u)) + MGpe'® + .5
0 0 2p 0 U
It is easy to see that because

om _
J’ deeizne -
0

for any non-zero integer 7, the result is an expansion in powers of MGu, of which the leading
term is

Ap - 211 =3MG %>+M<H,

as before, and which is independent of p.
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