
Dimensional analysis of neutron stars

The equations for the Ricci tensor were
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Size and mass
We shall now derive some qualitative results using dimensional analysis. Recall 
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and take for the equation of state of a pure neutron gas
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We can rewrite Eq. 25.17b as

p(r)  =  1
3
 ρ(r)  −   

m2

3π2 ∫  dk k2 k2  +  m2


−1⁄2

0

kF(r)
(26.1)

Now change to the dimensionless variable sinhθ  =  
k
m

 ; let

ρc  =  
m4

3π2 , θc  =  sinh−1(k ⁄ m) (26.2)

then
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p(r)  =  ρc ∫  
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From Eq. 26.3a,b we have
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where F(x) is some transcendental function.

The dimensional quantities in the theory are therefore ρc and 2G. From them we can construct a

radius (recall h--  =  c  =  1)
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and a mass
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In general, the mass of the star must be Mc times a function of the dimensionless ratio 
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and the radius of the star must be Rc times a dimensionless function: 
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Rotational frequency
Dimensional analysis also gives us a handle on the rotational frequencies of neutron stars: clearly the
maximum frequency occurs when the centrifugal acceleration and gravitational acceleration are

comparable, 
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or
τmin  ≈  0.3×10−3 sec ; 

so that the observed pulsars with millisecond periods agree well with this. White dwarf periods,
however, are necessarily much longer. Therefore pulsars must be neutron stars. 
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Some features of stellar structure 
The total number of neutrons is 
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where the (conserved) neutron current is JN
µ  (r) . We can define the ‘‘proper’’ number density as
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hence 
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We can define the energy content of the star as 
Etot  =  T  +  V  =  M(R)  −  Nm (26.9) 

and the local (non-gravitational) energy density as 
ε(r)  =  ρ(r)  −  m n(r) (26.10 ) 

which gives 
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We can make the identifications
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and to leading order we see that

T  ≈  4π ∫ dr r2  ε(r) (26.13 a) 
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r
 ,
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Equations 26.13a,b are precisely what we would have written down based on Newtonian mechanics
and Newtonian gravitation. 
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