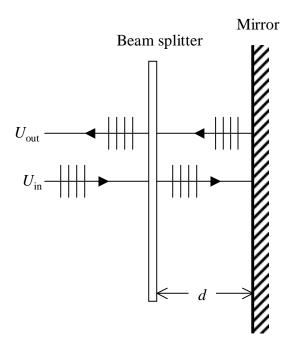
1. In general, a lossless beam splitter can be characterized by its complex transmittance t and complex reflectance r. In other words, when a wave $U_{\rm in}$ is incident on the beam splitter, a wave $rU_{\rm in}$ is reflected from the front surface and a wave $tU_{\rm in}$ is transmitted out the rear surface. Conservation of energy evidently requires that $|r|^2 + |t|^2 = 1$.

A less obvious relation between r and t can be obtained by considering the peculiar interferometer shown below, in which the beam splitter is placed a distance d in front of a perfectly reflecting plane mirror. Suppose that light acquires a phase ϕ_M when it bounces off the mirror.

- (a) By summing the multiply reflected fields, find an expression for the total wave reflected by the interferometer.
- (b) By energy conservation, the intensity of the reflected wave must equal the intensity of the incident wave, regardless of the spacing d. Using this fact, show that if $r = |r| \exp(i\beta)$, then t must be

$$t = |t|e^{i(\beta \pm \frac{\pi}{2})}$$

Hint: if an equation of the form $A + Be^{i\phi} + Ce^{-i\phi} = 0$ holds for all ϕ , then A, B and C must all be zero.



- 2. Suppose a laser produces pulses of light 50 fs in duration, repeated at a 100 MHz rate (1 fs = 10^{-15} s). The central wavelength of the light is 800 nm.
- (a) How many optical cycles occur during one pulse?
- (b) Approximately what range of wavelengths of light is present?
- (c) Averaged over long times (~ 1 s), the laser's power output is 0.1 W. Estimate the peak optical power during a single pulse.
- 3. Compute the Fourier transforms F_{ν} of the following functions, and sketch both f(t) and $|F_{\nu}|^2$:

(a)
$$f(t) = \begin{cases} 0 & \text{if } t < 0 \\ \sin(2\pi\nu_0 t) & \text{if } 0 \le t \le T \\ 0 & \text{if } t > T \end{cases}$$

Take $\nu_0 T = N$ for integer N.

(b)
$$f(t) = \exp\left(-\frac{|t|}{T}\right)$$

4. Consider the sum of two monochromatic waves in free space:

$$u(\mathbf{r}, t) = A\cos(2\pi\nu_1 t - k_1 z) + A\cos(2\pi\nu_2 t - k_2 z)$$

with $\nu_1 \approx \nu_2$.

- (a) Find the complex representation $U(\mathbf{r},t)$ for this wave.
- (b) Calculate the intensity $I(\mathbf{r},t)$. At what speed does the interference pattern move in space?