1. Any ray matrix \(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \) has
\[AD - BC = \frac{n_{in}}{n_{out}} \]

For symmetric system, \(n_{in} = n_{out} \)
So \(AD - BC = 1 \)

This rules out (b): \(AD - BC = 4 \)
and (d): \(AD - BC = -1 \)

Easiest approach: think of a few symmetric systems:

- Single thin lens \(M = \begin{bmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{bmatrix} \)

- Free propagation distance \(d \): \(M = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \)

Both of these have \(A = D \), so guess \((a) \) with confidence

To make sure:

If input ray \(\hat{u}_1 \) leads to output \(\hat{u}_2 \),
then input \(\hat{u}_2' = \begin{bmatrix} \theta_2 \\ -\theta_2 \end{bmatrix} \) leads to output \(\hat{u}_1' = \begin{bmatrix} \theta_1 \\ -\theta_1 \end{bmatrix} \)

for a symmetric system:
Try \(u_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

Then for (a), \(\tilde{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) \(\tilde{u}_2' = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \)

and \(M_a \tilde{u}_2' = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \tilde{u}_1' \)

But for (a), \(\tilde{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) \(\tilde{u}_2' = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)

and \(M_a \tilde{u}_2' = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \neq \tilde{u}_1' \)

So answer must be \((a) \)

General Solution:

\[
\begin{align*}
u_1 &= \begin{bmatrix} y_0 \\ \theta \end{bmatrix} \\
u_2 &= \begin{bmatrix} A y_0 + B \theta \\ C y_0 + D \theta \end{bmatrix} \\
u'_2 &= \begin{bmatrix} A y_0 + B \theta \\ -C y_0 - D \theta \end{bmatrix}
\end{align*}
\]

\[
M\tilde{u}_2' = \begin{bmatrix} A^2 y_0 + AB \theta - BC y_0 - BD \theta \\ AC y_0 + BC \theta - DC y_0 - D^2 \theta \end{bmatrix} = \begin{bmatrix} y_0 \\ -\theta \end{bmatrix}
\]

Need

\[
\begin{align*}
A^2 - BC &= 1 \\
AB - BD &= 0 \\
AC - DC &= 0 \\
D^2 - BC &= 1
\end{align*}
\]

Then \(AD - BC = A^2 - BC = D^2 - BC = 1 \) anyway.
2. Plane wave is defined by
\[U(\vec{r}) = A e^{-i k_0 \vec{r}} \]
\[u(\vec{r}) = \text{Re}(U(\vec{r}) e^{i\omega t}) \]
\[= |A| \cos(\omega t - k_0 \cdot \vec{r} + \phi) \]

So:
(a) Wave, but not plane wave
(b) Plane wave with \(\phi = -\frac{\pi}{2} \)
(c) Plane wave with \(A = 1, \ k = 0 \)
(d) Not a plane wave
(e) Looks like plane wave with \(\vec{k} = \left(\frac{-\pi}{\lambda}, \frac{-\pi}{\lambda}, \frac{\sqrt{2} \pi}{\lambda} \right) \)

check \(\vec{k}^2 = \frac{\pi^2}{\lambda^2} \) \(1 + 1 + 2 = \frac{2 \pi^2}{\lambda^2} \)

so it is a good solution.

3. Say red slit generates diffracted wave \(U_R(t) \)
blue slit \(U_B(t) \)

Then interference term is \(\langle U_R^* U_B \rangle \)

But if \(U_R \) oscillates near \(U_R \)
and \(U_B \) oscillates near \(U_B \)
with \(\omega_0 - \omega \) large,

then time average
\[\langle U_R^* U_B \rangle \sim \langle e^{-i(\omega_R - \omega_B) t} \rangle \to 0 \]

So no interference observed anywhere, \((a) \)
4. Wave propagates as \(e^{i(\omega t - kz)} \)

 \[e^{\frac{\alpha^2}{2} i(\omega t - nk_0 z)} \]

 \(n = \text{Re} \, \tilde{n} \)

 Phase velocity is \(c = \frac{\omega}{nk_0} = \frac{c_0}{n} \)

 \[\frac{c_0}{1.5} = 0.667 \, c_0 \]

5. Label pictures (a) (b) (c) (d)

 (Sorry I forgot labels on exam!)

 Can rule out (a) \& (b) because center of Fraunhofer pattern is always bright

 (Recall problem 6 from midterm.)

 To judge between (c) \& (d), note fastest spatial frequency in horizontal direction is \(\frac{1}{a} \)

 while in vertical direction its \(\frac{2}{a} \)

 Since diffraction pattern \(F(\omega_x = \frac{x}{2a}, \omega_y = \frac{2y}{3a}) \)

 expect large \(y \) features to have twice the length scale of large \(x \) features.

 Look at central big rectangle: in (c), sides have 2:1 ratio. In (d), sides have 3:1 ratio.

 So, choose [C]
How I made pictures:

Can write $\begin{array}{c}
\Huge + \\
\Huge \text{as} \\
\Huge \begin{array}{c}
\Box \\
\Box - \Box
\end{array}
\end{array}$

Since everything is linear, get

$$U(x,y) = \text{rect}(a, 3a) + \text{rect}(3a, \frac{3a}{2}) - \text{rect}(a, \frac{a}{2})$$

where $\text{rect}(Dx, Dy)$ is pattern from rectangular slit

$$\text{rect}(Dx, Dy) = \frac{Dx \cdot Dy}{\lambda d} \cdot \text{sinc} \left(\frac{x \cdot D_x}{\lambda d} \right) \cdot \text{sinc} \left(\frac{y \cdot D_y}{\lambda d} \right)$$

6. Here TE is normal to page, and optic axis is in page, so TE is ordinary, TM is extraordinary.

If $n_0 > n_1$, then $n_{TE} < n_{TM}$

So TE light refracts less:

$$\sin \Theta_2 = \frac{n_1}{n_2} \sin \Theta_1$$

the closer n_1 and n_2 are, the closer Θ_1 and Θ_2 are.

So, choose (b)
Multiple Choice Scores:

% correct:
1. 15%
2. 3.7%
3. 15%
4. 70%
5. 41%
6. 74%

Average score: 11.3/30
7. \(U(z, 0) = A \left[\frac{1}{4} (e^{\frac{4\pi i}{\lambda} (z-b)} + e^{\frac{4\pi i}{\lambda} (z-b)} + e^{-\frac{4\pi i}{\lambda} (x-b)} + e^{-\frac{4\pi i}{\lambda} (x-b)}) - 1 \right] \)

So \(v_x, v_y = \pm \frac{1}{2\lambda} \) for first terms

\(= 0 \) for last term

Then \(v_z = \sqrt{v_x^2 + v_y^2} = \frac{1}{\sqrt{2\lambda}} \) for first terms

\(v_z = \frac{1}{\lambda} \) for last term

So \(U(x, y, z) = A \left[e^{-\frac{2\pi i z}{\lambda}} \cos \frac{\pi x}{\lambda} \cos \frac{\pi y}{\lambda} - e^{-\frac{2\pi i z}{\lambda}} \right] \)

\(U(0, 0, z) = A \left[e^{-\frac{2\pi i z}{\lambda}} - e^{-\frac{2\pi i z}{\lambda}} \right] = 0 \)

Need \(\frac{2\pi n}{\sqrt{2\lambda}} = 2\pi n + \frac{2\pi n}{\lambda} \) for integer \(n \)

\(\sqrt{2}(\frac{1}{\sqrt{2}} - 1) = n \lambda \)

\(z = n \frac{\lambda}{\sqrt{2} - 1} \) or \(\frac{2\lambda}{n \sqrt{1 - \frac{1}{\sqrt{2}}} \} \)
8. From Fresnel equations,

\[r_+ = 1 \quad \text{if} \quad n_2 < \infty \]
\[r_- = +1 \]

From Figure 6.2-1 see that in either case

get \(E_{\text{ref}} = -E_{\text{in}} \) at normal incidence

So \(E_{\text{tot}} = E_{\text{in}} - E_{\text{ref}} \)

\[E_{\text{tot}} = A \hat{z} e^{-ikz} - A \hat{z} e^{+ikz} \]

\[E_{\text{tot}} = -2iA \hat{x} \sin k\hat{z} \]

Then \(\hat{H} = \hat{H}_{\text{in}} - \hat{H}_{\text{ref}} \)

\[H_{\text{in}} = \frac{i}{\eta_0} k x E_{\text{in}} = \frac{i}{\eta_0} (\hat{x} \times \hat{z}) A e^{-ikz} \]

\[= \frac{1}{\eta_0} \hat{y} A e^{-ikz} \]

while \(\hat{H}_{\text{ref}} = \frac{i}{\eta_0} k_{\text{ref}} \times E_{\text{ref}} = \frac{i}{\eta_0} (-\hat{x} \times \hat{z}) A e^{ikz} \]

\[= \frac{1}{\eta_0} \hat{y} A e^{ikz} \]

So \(\hat{H}_{\text{tot}} = \frac{A}{\eta_0} \hat{y} (e^{-ikz} - e^{ikz}) = \frac{2A}{\eta_0} \hat{y} \cos k\hat{z} \)

Above for \(z < 0 \). For \(z > 0 \), have \(E, H \sim e^{\frac{\alpha z^2}{2}} \rightarrow 0 \) within conductor.
q. Say initial polarization is \(\vec{J}_{in} = \begin{bmatrix} J_x \\ J_y \end{bmatrix} \)

write as
\[
\vec{J}_{in} = \frac{1}{2} \begin{bmatrix} J_x \\ J_y \end{bmatrix} + \frac{J_x}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{J_y}{2i} \begin{bmatrix} 1 \\ i \end{bmatrix} - \frac{J_y}{2i} \begin{bmatrix} 1 \\ -i \end{bmatrix}
\]

\[
= \frac{1}{2} \begin{bmatrix} J_x (t_{R} + t_{L}) + \frac{1}{i} J_y (t_{R} t_{L} - t_{L} t_{R}) \end{bmatrix}
\]

Pass through medium:
\[
\vec{J}_{out} = \frac{1}{2} \begin{bmatrix} J_x (t_{R} t_{L} - t_{R} + t_{L}) + \frac{1}{i} J_y (t_{R} t_{L} - t_{L} t_{R}) \end{bmatrix}
\]

\[
= \frac{1}{2} \begin{bmatrix} J_x (t_{R} + t_{L}) - i \frac{1}{i} J_y (t_{R} - t_{L}) \\ J_x (t_{R} - t_{L}) + J_y (t_{R} + t_{L}) \end{bmatrix}
\]

So
\[
\vec{J}_{out} = \frac{1}{2} \begin{bmatrix} t_{R} + t_{L} & -i (t_{R} - t_{L}) \\ i (t_{R} - t_{L}) & t_{R} + t_{L} \end{bmatrix} \vec{J}_{in}
\]

Could also write \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and solve \(M \begin{bmatrix} \vec{1} \\ \vec{i} \end{bmatrix} = t_{R} \begin{bmatrix} \vec{1} \\ \vec{i} \end{bmatrix} \)

\[
M \begin{bmatrix} \vec{1} \\ \vec{i} \end{bmatrix} = t_{L} \begin{bmatrix} \vec{1} \\ \vec{-i} \end{bmatrix}
\]

Or, write \(M = U^{-1} \begin{bmatrix} t_{R} & 0 \\ 0 & t_{L} \end{bmatrix} U \) for \(U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)
10. Evaluate

\[G(\tau) = \langle U^*(t) U(t+\tau) \rangle \]

\[U(t) = \frac{1}{\sqrt{2}} [U_0(t) + U_0(t-a)] \]

\[G(\tau) = \frac{i}{2} \langle [U_0^*(t) U_0(t+\tau)] [U_0(t+\tau) + U_0(t-a+\tau)] \rangle \]

\[= \frac{i}{2} \left[\langle U_0^*(t) U_0(t+\tau) \rangle + \langle U_0^*(t-a) U_0(t+\tau) \rangle \\
+ \langle U_0^*(t) U_0(t-a+\tau) \rangle + \langle U_0^*(t-a) U_0(t-a+\tau) \rangle \right] \]

\[= \frac{i}{2} \left[G_0(\tau) + G_0(\tau+a) + G_0(\tau-a) + G_0(\tau) \right] \]

where \(G_0(\tau) = \langle U_0^*(t) U_0(t+\tau) \rangle \)

Then

\[S(\nu) = \int_{-\infty}^{\infty} e^{-2\pi i \nu \tau} G(\tau) \, d\tau \]

\[= S_0(\nu) + \frac{i}{2} \int_{-\infty}^{\infty} e^{-2\pi i \nu \tau} [G_0(\tau+a) + G_0(\tau-a)] \, d\tau \]

\[= S_0(\nu) + \frac{i}{2} \int_{-\infty}^{\infty} [e^{-2\pi i \nu (\tau-a)} + e^{-2\pi i \nu (\tau+a)}] G_0(\tau) \, d\tau \]

\[= S_0(\nu) + \frac{i}{2} \left(e^{2\pi i \nu a} + e^{-2\pi i \nu a} \right) S_0(\nu) \]

\[S(\nu) = S_0(\nu) \left[1 + \cos(2\pi \nu a) \right] \]