by adding fields with different ω 's

Today, show how: Fourier transform

Outline:

- Motivation
- Definition
- Transform properties
- Spatial transforms

Lots of math today

Next time:

- Apply Fourier methods to wave propagation
- Start working on diffraction

Motivation

Lecture 1:

Claimed any wave $=$ sum of plane waves
For now, show that:
Any function of time $f(t)$
$=$ sum of harmonic functions $e^{-i \omega t}$
More general: any function
More specific: single variable
imagine $f(t)=E(\mathbf{r}, t)$ at fixed \mathbf{r}
Talk about full waves again at end

Why should $f(t)=$ sum of $e^{i \omega t}$'s?
$=$ sum of sines and cosines?
Make components add constructively where f large destructively where f small

Example: add $f_{n}=\cos \left[(1.2)^{n} \omega t\right]$ for $n=1$ to 9 :

Sum gives peak at $t=0$:

More cosines \rightarrow sharper peak, flatter background

If you can make sharp peaks: any $f(t)=$ sum of peaks at different t 's

Fourier Transform (Hecht 7.3, 7.4, 11.1)
Most general sum $=$ integral
Can write $f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d \omega$
$F(\omega)=$ coefficients of sum
$1 / 2 \pi=$ normalizing factor

Fine, but how to determine $F(\omega)$?

Basic Fourier trick:
multiply both sides by $e^{i \beta t}$ and integrate over t

$$
\int_{-\infty}^{\infty} e^{i \beta t} f(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i \beta t} F(\omega) e^{-i \omega t} d \omega d t
$$

Change order of integrals on rhs:

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega)\left(\int_{-\infty}^{\infty} e^{i(\beta-\omega) t} d t\right) d \omega \\
& =\int_{-\infty}^{\infty} F(\omega) \delta(\beta-\omega) d \omega
\end{aligned}
$$

for

$$
\delta(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} d t \equiv \text { "delta function" }
$$

Consider $\delta(\omega)$ (Hecht 11.2.3)
If $\omega \neq 0$, then $e^{i \omega t}$ oscillates $+/-$
So $\int e^{i \omega t} d t$ averages to zero:
Expect $\delta(\omega)=0$ for $\omega \neq 0$

But for $\omega=0, e^{i \omega t}=e^{0}=1$

$$
\text { So } \int_{-\infty}^{\infty} e^{i \omega t} d t \rightarrow \int_{-\infty}^{\infty} d t=\infty
$$

Like adding up infinite number of cosines: get infinitely high, infinitely narrow peak

Important property:

$$
\int_{-\infty}^{\infty} \delta(\omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i \omega t} d t d \omega=1
$$

delta function is normalized
Derived in handout

Go back to

$$
\int_{-\infty}^{\infty} e^{i \beta t} f(t) d t=\int_{-\infty}^{\infty} F(\omega) \delta(\beta-\omega) d \omega
$$

delta function peaked at $\omega=\beta$, zero elsewhere

At $\omega=\beta$, have $F(\omega)=F(\beta)$
So have

$$
\int_{-\infty}^{\infty} e^{i \beta t} f(t) d t=F(\beta) \int_{-\infty}^{\infty} \delta(\beta-\omega) d \omega=F(\beta)
$$

Usually write

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{i \omega t} d t
$$

Call $F=$ Fourier transform of f
Then $f=$ inverse Fourier transform of F :

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d \omega
$$

Other definitions possible:

$$
\begin{aligned}
& F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \\
& f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega
\end{aligned}
$$

or $F(\nu)=\int_{-\infty}^{\infty} f(t) e^{i 2 \pi \nu t} d t$

$$
f(t)=\int_{-\infty}^{\infty} F(\nu) e^{-i 2 \pi \nu t} d \nu
$$

$\nu=\omega / 2 \pi=$ frequency in Hz

Our version: all ω integrals have $1 / 2 \pi$ factor

Do an example:
Say $f(t)=1 / \tau$ if $-\frac{\tau}{2}<t<\frac{\tau}{2}$
$=0$ otherwise

Normalized to 1

Calculate $F(\omega)$:

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} f(t) e^{i \omega t} d t \\
& =\frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2} e^{i \omega t} d t \\
& =\frac{1}{i \omega \tau}\left(e^{i \frac{\omega \tau}{2}}-e^{-i \frac{\omega \tau}{2}}\right) \\
& =\frac{2}{\omega \tau} \sin \left(\frac{\omega \tau}{2}\right)
\end{aligned}
$$

Define $\sin (\theta) / \theta \equiv \operatorname{sinc} \theta$
Have $\operatorname{sinc}(0)=1$ (peak value)
$\operatorname{sinc}(n \pi)=0($ integer $n \neq 0)$
Peak width $\Delta \theta \approx 2 \pi$

So $F(\omega)=\operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$
Peaked at $\omega=0$
Width $\Delta \omega=\pi / \tau$

General feature:
width $\Delta \omega$ of $F(\omega)$ larger when width Δt of $f(t)$ is smaller

Can show $\Delta \omega \Delta t \geq 1 / 2$
(for particular definition of widths)

Need high frequencies if f changes quickly always expect $\omega_{\max } \approx 1 / \delta t$ $\delta t=$ time scale for $f(t)$ to change

For rectangular pulse, $\delta t \rightarrow 0$
See $F(\omega)$ decreases slowly $\propto \omega^{-1}$ for $\omega \rightarrow \infty$ no definite $\omega_{\max }$

Question: If we set $F(\omega)=0$ for $|\omega|$ greater than some ω max, how would $f(t)$ change?

Properties of Fourier Transform

(Hecht 11.2, handout)
A. Even for real $f(t), F(\omega)$ can be complex

$$
\begin{aligned}
& \begin{aligned}
& F(\omega)=\int f(t) e^{i \omega t} d t \\
& F^{*}(\omega)=\int f(t) e^{-i \omega t} d t \\
& \text { So } F-F^{*}=\int f(t)\left(e^{i \omega t}-e^{-i \omega t}\right) d t \\
&=2 i \int f(t) \sin (\omega t) d t \\
&=0 \text { only if } f(t)=f(-t)
\end{aligned}
\end{aligned}
$$

Why is F complex?
Because we defined F with complex exponentials

Also explains why we get $\omega<0$ terms:
in complex space $\omega<0$ and $\omega>0$ are different
If f real, then $F(-\omega)=F^{*}(\omega)$
all information in $\omega>0$ terms

Fits well with complex representation of fields: we're just suppressing $\omega<0$ components
B. Linearity

If $f(t)=a f_{1}(t)+b f_{2}(t)$ then

$$
F(\omega)=a F_{1}(\omega)+b F_{2}(\omega)
$$

where $F_{1}=$ transform of f_{1}

$$
F_{2}=\text { transform of } f_{2}
$$

Very useful:
Often complicated $f=$ sum of simple f 's

Example:

Say pulses width T, height $=A$
Gap width $=T$
Remember $\operatorname{sinc}(\omega \tau / 2)=$ transform of pulse width τ, height $1 / \tau$

First pulse width $\tau=3 T$, second pulse $\tau=T$
Adjust amplitudes of F accordingly
Then $F(\omega)=3 A T \operatorname{sinc}\left(\frac{3 \omega T}{2}\right)-A T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$
C. Translation Properties

If $f(t)=g(t+\tau)$ then

$$
F(\omega)=e^{-i \omega \tau} G(\omega)
$$

where $G=$ transform of g

If $f(t)=e^{-i \omega_{0} t} g(t)$ then

$$
F(\omega)=G\left(\omega-\omega_{0}\right)
$$

Also useful for obtaining new transforms

Example: pulsed harmonic signal

$$
\begin{aligned}
f & =A e^{-i \omega_{0} t} \text { for }|t|<\tau / 2 \\
& =0 \text { otherwise }
\end{aligned}
$$

Then $F(\omega)=A \tau \operatorname{sinc}\left[\frac{\left(\omega-\omega_{0}\right) \tau}{2}\right]$
Peak in ω space centered at ω_{0}
Question: What would the transform look like if $f=\cos \left(\omega_{0} t\right)$ for $|t|<\tau / 2$ and $f=0$ otherwise?

D. Convolution

If $F(\omega)=F_{1}(\omega) F_{2}(\omega)$, then

$$
f(t)=\int_{-\infty}^{\infty} f_{1}(T) f_{2}(t-T) d T
$$

where $f_{1}, f_{2}=$ inverse transforms of F_{1}, F_{2}
Say that $f=$ convolution of f_{1} and f_{2}
Lets you modify $F(\omega)$ and understand result

Example: $f_{1}(t)=1 / \tau$ if $(|t|<\tau / 2)$
Then $F_{1}(\omega)=\operatorname{sinc}(\omega \tau / 2)$

Multiply F_{1} by F_{2}

$$
F_{2}(\omega)=1 \text { if }|\omega|<\omega_{\max }
$$

$F_{2}(\omega)=0$ otherwise
Chops off high frequencies, as before
What is $f_{2}(t)$?

$$
\begin{aligned}
f_{2}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{2}(\omega) e^{-i \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}} e^{-i \omega t} d \omega \\
& =\frac{1}{\pi t} \sin \left(\omega_{m} t\right)=\frac{\omega_{m}}{\pi} \operatorname{sinc} \omega_{m} t
\end{aligned}
$$

(Form of f and F interchangable)

So we get

$$
f(t)=\int_{-\infty}^{\infty} f_{1}(T) f_{2}(t-T) d T
$$

If ω_{m} is large then f_{2} is sharp peak

- only large for $\left|\omega_{m}(t-T)\right|<\pi$

So need T pretty close to t :
$f(t) \approx f_{1}(t)$
But edges of pulse "blurred" like sinc

Gives:

E. Correlation

Suppose $f(t)=\int_{-\infty}^{\infty} f_{1}^{*}(T) f_{2}(t+T) d T$
Say $f=$ correlation of f_{1} and f_{2}
Fancy way to compare two functions

- we'll use later

Obtain $F(\omega)=F_{1}^{*}(\omega) F_{2}(\omega)$
Similar to convolution result
F. Parseval's Theorem

If $F(\omega)$ is transform of $f(t)$ then

$$
\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega
$$

For wave, $\int|f(t)|^{2} d t \propto$ total energy in wave
Interpret $|F(\omega)|^{2} d \omega \propto$ energy in frequency band $d \omega$

Can measure:
Send light pulse through dispersing prism separates colors $=\omega$ components
Intensity of each color $\propto|F(\omega)|^{2}$

List of transforms

$f(t)$	$F(\omega)$
$\frac{1}{\tau} \quad\left(\|t\|<\frac{\tau}{2}\right)$	$\operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$
$e^{-i \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$
$\delta\left(t-t_{0}\right)$	$e^{i \omega t_{0}}$
$\frac{1}{\tau \sqrt{\pi}} e^{-t^{2} / \tau^{2}}$	$e^{-\omega^{2} \tau^{2} / 4}$

Use with linearity and scaling properties:
gives most of what we need

Spatial transforms

If $f(z)$ is function of spatial coordinate

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(k) e^{i k z} d k \\
& F(k)=\int_{-\infty}^{\infty} f(z) e^{-i k z} d z
\end{aligned}
$$

So (z, k) like (t, ω) : everything works the same
Question: My definition of $F(\omega)$ had $e^{i \omega t}$. Why did I change the sign for $F(k)$?

For 3D functions, need 3D transform:

$$
\begin{aligned}
& f(\mathbf{r})=\frac{1}{(2 \pi)^{3}} \iiint F(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} d^{3} k \\
& F(\mathbf{k})=\iiint f(\mathbf{r}) e^{-i \mathbf{k} \cdot \mathbf{r}} d^{3} r
\end{aligned}
$$

integrals over all space
Same ideas, sometimes integrals are harder We'll see one example later

For instance:
$|F(\mathbf{k})|^{2}=$ energy density at wave vector \mathbf{k}

What about space and time together?
Write

$$
\begin{aligned}
& f(\mathbf{r}, t)=\frac{1}{(2 \pi)^{4}} \int F(\mathbf{k}, \omega) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} d^{3} k d \omega \\
& F(\mathbf{k}, \omega)=\int f(\mathbf{r}, t) e^{-i(\mathbf{k} \cdot \mathbf{r}-\omega t)} d^{3} r d t
\end{aligned}
$$

Works for any function f

Can write any function as sum of plane waves! as advertised in Lecture 1

What about waves?
Say electric field $E(\mathbf{r}, t)$
Write transform as $\mathcal{E}(\mathbf{k}, \omega)$

$$
E(\mathbf{r}, t)=\frac{1}{(2 \pi)^{4}} \int \mathcal{E}(\mathbf{k}, \omega) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} d^{3} k d \omega
$$

But, if E is solution of wave equation, need

$$
k^{2}=\frac{n^{2} \omega^{2}}{c^{2}}
$$

Not all functions are waves

Then ω and \mathbf{k} aren't independent
Really only three variables: use \mathbf{k} then $\omega=\omega(\mathbf{k}) \equiv \omega_{k}$

Then if

$$
\mathcal{E}(\mathbf{k})=\int E(\mathbf{r}, 0) e^{-i \mathbf{k} \cdot \mathbf{r}} d^{3} r
$$

get $E(\mathbf{r}, t)=\frac{1}{(2 \pi)^{3}} \int \mathcal{E}(\mathbf{k}) e^{i\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)} d^{3} k$
Gives wave at all times in terms of $E(\mathbf{r}, t=0)$
Question: What if $E(t=0)$ is zero everywhere, and at some later time I turn on a source?

Summary:

- Fourier transform lets you express functions as sum of harmonic functions
- Evaluate transform by doing integral
- Covered several important properties
- Can do transforms in space and/or time
- For waves, space and time dependence related

