
Phys 531 Lecture 2 7 September 2004

Electromagnetic Theory (Hecht Ch. 3)

Last time, talked about waves in general

•wave equation: ∇2ψ(r, t) =
1

v2
∂2ψ

∂t2

ψ = amplitude of disturbance of medium

For light, “medium” = EM field
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This time:

• derive wave equation from Maxwell’s

Equations

• study properties of EM waves in vacuum

Next time:

• consider EM waves in matter
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Maxwell’s Equations:

Basic postulates of electromagnetism

Physical quantities:
Electric field E(r, t) (Volts/m)
Magnetic field B(r, t) (Tesla)

Charge density ρ(r, t) (Coulombs/m3)

Current density J(r, t) (Amperes/m2)

Gauss’s Laws (charge produces a field):
∫

�
�

�



∫

E · dS =
1

ε0

∫∫∫

ρ dV
∫

�
�

�



∫

B · dS = 0

ε0 = permittivity of free space = 8.8 pF/m

(from capacitor measurements)
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Faraday’s Law (changing B produces E):
∮

E · d` = −
∫∫

∂B

∂t
· dS

Ampere’s Law (current, changing E produce B):

∮

B · d` = µ0

∫∫

(

J + ε0
∂E

∂t

)

· dS

µ0 = permeability of free space

= 1.3 µH/m ≡ 4π × 10−7 H/m

These are integral form of Maxwell’s equations
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Will be more useful in differential form

Use Gauss’s Theorem: for any F(r)
∫

�
�

�



∫

F · dS =

∫∫∫

∇ · F dV

Here ∇ ≡ x̂ ∂
∂x + ŷ ∂

∂y + ẑ ∂∂z

Also Stoke’s Theorem:

∮

F · d` =

∫∫

(∇×F) ·dS

• Analogous to ordinary calculus:

f(x2) − f(x1) =
∫ x2

x1

df

dx
dx

function on boundary integral of derivative
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Apply to Maxwell:
∫

�
�

�



∫

E · dS =

∫∫∫

∇ · E dV

=
1

ε0

∫∫∫

ρ dV

True for any volume V , so at each point r

∇ · E(r) =
1

ε0
ρ(r)

Similarly, get ∇ · B = 0
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Also, for any surface S,
∮

E · d` =
∫∫

∇× E · dS = −
∫∫

∂B

∂t
· dS

so

∇× E = −
∂B

∂t

and similarly

∇× B = µ0J + ε0µ0
∂E

∂t

These are differential form of Maxwell’s equations
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Light Waves (Hecht 3.2)

Light propagates in vacuum: ρ = J = 0

Maxwell equations become:

∇ · E = 0 (1)

∇ · B = 0 (2)

∇× E = −
∂B

∂t
(3)

∇× B = ε0µ0
∂E

∂t
(4)

Where’s the wave equation?
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Derivation of wave equation

Take ∂/∂t of (4):

∂

∂t
(∇× B) = ε0µ0

∂2E

∂t2

or

∇×
∂B

∂t
= ε0µ0

∂2E

∂t2

Then using (3):

−∇× (∇× E) = ε0µ0
∂2E

∂t2

Need to simplify ∇× (∇× E)
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Cross product rule:

a × (b × c) = b(a · c) − (a · b)c

so

∇× (∇× E) = ∇(∇ · E) − (∇ · ∇)E

But ∇ · E = 0, and ∇ · ∇ = ∇2, so

∇2E = ε0µ0
∂2E

∂t2

wave equation, v = (ε0µ0)
−1/2
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Similarly, take ∂/∂t of (3), end up with

∇2B = ε0µ0
∂2B

∂t2

So expect EM waves to exist. Do they correspond

to light?

Compare speeds: (ε0µ0)
−1/2 = 3 × 108 m/s

Measured light speed c = 3 × 108 m/s

Conclude light is EM wave
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EM waves are vector waves

Previously considered scalar waves

Actually six coupled wave equations:

(Ex, Ey, Ez, Bx, By, Bz)

Components must still obey Maxwell’s equations

example:

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0

and

∂Ex

∂y
−
∂Ey

∂x
= −

∂Bz

∂t
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Can simplify for plane wave solutions:

E(r, t) = E0e
i(k·r−ωt)

B(r, t) = B0e
i(k·r−ωt)

with E0, B0 = complex vector amplitudes

Sometimes confusing, so write out:

E0 = |E0x|e
iφxx̂ + |E0y|e

iφyŷ + |E0z|e
iφz ẑ

and actual wave is

E =|E0x|x̂ cos(k · r − ωt+ φx)

+ |E0y|ŷ cos(k · r − ωt+ φy)

+ |E0z |̂z cos(k · r − ωt+ φz)
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Plane Waves

Have
∂E

∂x
=

∂

∂x
E0e

i(kxx+kyy+kzz−ωt)

= ikxE0e
i(kxx+kyy+kzz−ωt)

= ikxE(r, t)

Also ∂E
∂y = ikyE, ∂E

∂z = ikzE

and ∂B
∂x = ikxB, ∂B

∂y = ikyB, ∂B
∂z = ikzB

Thus, for plane waves, can replace

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
→ i(x̂kx+ ŷky+ ẑkz) = ik
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Also, ∂
∂t → −iω

So wave equation becomes

∇2E =
1

c2
∂2E

∂t2
→ −k2E = −

ω2

c2
E

Solution if k = ω/c, as before.

Maxwell equations become

k · E = 0 k · B = 0
k × E = ωB k × B = − ω

c2
E
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Exponentials factors ei(k·r−ωt) drop out, so

k̂ · E0 = 0 k̂ · B0 = 0

k̂ × E0 = cB0 k̂ × B0 = −1
cE0

with k̂ = propagation direction

Dot products indicate E0, B0 ⊥ k

• Say EM waves are transverse

Cross products indicate B0 =
1

c
k̂ × E0

• So B ⊥ E as well

• |B0| = |E0|/c
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So (E,B,k) form orthogonal basis

E

B

k

Picture: (snapshot at fixed t; k̂ = x̂)

E

B

x
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Question: If a wave has E along x̂ and B along ẑ, what is

the direction of propagation?

Question: How would my ‘snapshot’ picture evolve in time?
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Frequencies (Hecht 3.6)

EM waves observed over large range of ω:

ν (Hz) λ Name

< 105 > 3000 m ELF wave
105 – 109 3000 m – 30 cm radio wave
109 – 1011 30 cm – 3 mm microwave
1011 – 1013 3 mm – 30 µm terahertz
1013 – 4 × 1014 30 µm – 750 nm infrared
4–8 × 1014 750–375 nm visible light
8 × 1014 – 1016 375–30 nm ultraviolet
1016 – 1019 30 nm – 30 pm x-rays
> 1019 < 30 pm gamma rays
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Optics particularly deals with “light:”

infrared to ultraviolet

Lower ν: approximations not valid

ray optics fails

wave approximations fail

Higher ν: quantum effects important

wave effects hard to see

ray optics OK, but no optical materials
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Properties of plane waves

Sometimes write E0 = E0̂ with |̂| = 1

• E0 = complex amplitude (V/m)

• ̂ = polarization vector = Jones vector

- More on polarization later

- Amplitude related to energy in wave:

discuss now
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General EM energy density (J/m3):

u(r) =
ε0
2
|E|2 +

1

2µ0
|B|2

Energy in volume V =
∫∫∫

V

u(r) dV

For plane wave |B| = |E|/c. So

u =
ε0
2
|E|2 +

1

2µ0c2
|E|2

=
ε0
2
|E|2 +

ε0
2
|E|2 = ε0|E|2
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But here E refers to real electric field

If E = Re [E0̂e
i(k·r−ωt)], then really

E =|E0x|x̂ cos(k · r − ωt+ φx)

+ |E0y|ŷ cos(k · r − ωt+ φy)

+ |E0z |̂z cos(k · r − ωt+ φz)

and

u =|E0x|
2 cos2(k · r − ωt+ φx)

+ |E0y|
2 cos2(k · r − ωt+ φy)

+ |E0z|
2 cos2(k · r − ωt+ φz)

Energy oscillates in time.
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For light, oscillation is rapid:

usually average over many periods

Average of cos2() over many periods = 1
2

So time-average 〈u〉 =
ε0
2

(|E0x|
2+|E0y|

2+|E0z|
2)

In terms of complex fields, 〈u〉 =
ε0
2
|E|2

where |E|2 = E · E∗ = |E0x|
2 + |E0y|

2 + |E0z|
2

Question: What is the total energy in a plane wave with

amplitude E0?
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Also interested in energy flow:

Use Poynting vector S =
1

µ0
E × B

Can show that

W =

∫∫

Σ

S · dΣ

is energy per unit time crossing surface Σ

Units of S are W/m2
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Plane waves: B0 = 1
c k̂ × E0, so

S =
1

µ0c
k̂ (|E0x|

2 cos2(k · r − ωt+ φx)

+ |E0y|
2 cos2(k · r − ωt+ φy)

+ |E0z|
2 cos2(k · r − ωt+ φz)

Direction of propagation k̂

= direction of energy flow Ŝ

Question: What do you think S(r) looks like for a spherical

wave?
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Define irradiance (aka intensity) =

time-average of magnitude of S

I = 〈|S|〉 =
1

2µ0c
|E0|

2 =
1

2η0
|E0|

2

where η0 ≡ (µ0/ε0)
1/2 = 377 Ω

“impedance of free space”

Units check: (W/m2) = (V/m)2/Ω
(Recall P = V 2/R from electronics)

I is most common measure of optical field strength
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In terms of complex fields: S =
1

2µ0
E × B∗

(implicit time average!)

Poynting vector gives other properties too:

• Energy density 〈u〉 =
|S|

c

• Linear momentum 〈p〉 =
1

c2

∫∫∫

S dV

• Angular momentum 〈L〉 =
1

c2

∫∫∫

r × S dV
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Summary:

• Light is EM wave

• Coupled E, B fields

• Plane waves, complex vector amplitudes

• Irradiance I = 1
2η0

|E0|
2 (W/m2)
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