
Phys 531 Complex Arithmetic

We will be using complex variables to describe waves throughout the course, so it
will be important for all students to be comfortable manipulating them. This handout
gives a few examples of how to do complex math.

Simple Operations

Suppose z1 = 2 + 3i and z2 = −1 + 4i. Then

z1 + z2 = (2 + −1) + (3 + 4)i = 1 + 7i

and
z1z2 = 2 × (−1) + 2 × (4i) + (3i) × (−1) + (3i) × (4i) = −14 + 5i.

Multiplying by a real number is particularly easy: 3z1 = 3 × 2 + 3 × (3i) = 6 + 9i.

Division is a bit harder. A good method is to write z1/z2 = (z1z
∗
2)/(z2z

∗
2), since

the product z2z
∗
2 ≡ |z2|2 is always real. This reduces complex division to a complex

multiplication and a real division. So,

z1
z2

=
(2 + 3i)(−1 − 4i)

(−1 + 4i)(−1 − 4i)
=

10 − 11i

17
= 0.5882 − 0.6471i

Polar Form

The form x + iy is sometimes called Cartesian form. It is often convenient to
instead express complex variables in polar form, z = reiθ. Here r is the magnitude
and θ is the phase. To go from Cartesian to polar form, use

r = |z| =
√
zz∗ =

√

x2 + y2

and
θ = tan−1

(y

x

)

= sin−1
(y

r

)

= cos−1
(x

r

)

.

Thus we have z1 = 3.61 exp (i0.983), where the angle is in radians. This can also
be expressed as z1 = 3.61 6 0.983 rad or 3.61 6 56.3◦. We will mostly be working with
variables rather than actual numbers, however, and the reiθ form will be most con-
venient.

An advantage of polar form is that multiplication and division are easy: if z1 =
r1e

iθ1 and z2 = r2e
iθ2 , then

z1z2 = r1r2e
i(θ1+θ2)

and
z1
z2

=
r1
r2
ei(θ1−θ2),

following the usual rules for multiplying exponentials. So, another way to do division
is to convert the numbers to polar form and then just divide the magnitudes and



subtract the phases. Just to check, we have z1 = 3.61 6 56.3◦ and z2 = 4.12 6 104.0◦,
so z1/z2 = 3.61/4.12 6 (56.3 − 104.0) = 0.875 6 − 47.7◦ which in Cartesian form is
0.588 − 0.647i, as we obtained above.

To go from polar form to Cartesian form, use

x = r cos θ

and
y = r sin θ.

So, 4 6 60◦ = 2 + 3.46i.

Calculating the Magnitude

It is often necessary to calculate the magnitude of a complicated expression. For
instance, we might want to know

A =

∣

∣

∣

∣

(p+ iq)e−α+ikd

1 + ikd

∣

∣

∣

∣

.

It would be a big mistake to try to work out the the real and imaginary parts of this
expression to apply |z| =

√

x2 + y2. Instead, use two simple techniques. First, the
magnitude of a product is equal to the product of the magnitudes: |z1z2| = |z1||z2|.
The same holds for division. So in our example, we have

A =
|p+ iq| × |e−α+ikd|

|1 + ikd| =

√

p2 + q2

√
1 + k2d2

|e−α+ikd|.

We could use the same rule on the exponential if we rewrote it as a product of e−α

and eikd. Or we can use the second technique, which starts with |z| =
√
zz∗. To

obtain z∗ we simply replace all the i’s in z by −i. In our example, we have

|e−α+ikd| =
(

e−α+ikde−α−ikd
)1/2

= e−α

since eikde−ikd = 1. So we get the final result

A =

(

p2 + q2

1 + k2d2

)1/2

e−α.

The ease of calculating z∗ can also be used to find the real and imaginary parts
of an expression, since

Re z =
1

2
(z + z∗)

and

Im z =
1

2i
(z − z∗).

This comes in handy sometimes.



Calculus

Integrals and derivatives don’t pay any attention to whether a function is real,
imaginary, or complex. So for instance,

d

du

(

1

1 + iu

)

=
−i

(1 + iu)2

and
∫ π/2

−π/2

eiθdθ =
1

i
eiθ

∣

∣

∣

∣

π/2

−π/2

=
1

i

(

eiπ/2 − e−iπ/2
)

= 2

where the final result is obtained using Euler’s identity eiθ = cos θ + i sin θ. Integrals
get more interesting when the variable being integrated over is complex, but we won’t
be doing much of that in this class.

Final Example

This is a homework problem from a previous year:

Suppose a harmonic wave ψ(x, t) is expressed as ψ =
Re Aei(kx−ωt), where A may be complex. Find an expression
for the time average 〈ψ2〉, where

〈f〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2

f(t)dt.

Let’s solve this. We need to calculate
∫ T/2

−T/2

ψ(x, t)2dt.

To get an explicit expression for ψ, take A = |A|eiφ, so that ψ = Re |A|ei(kx−ωt+φ) =
|A| cos(kx− ωt+ φ). Then we need

∫ T/2

−T/2

|A|2 cos2(kx− ωt+ φ)dt = |A|2
∫ T/2

−T/2

1 + cos 2(kx− ωt+ φ)

2
dt,

where I used a trig identity to obtain the right-hand side. The integral is then

|A|2
2

[

T − sin(2kx− ωT + 2φ)

2ω
+

sin(2kx + ωT + 2φ)

2ω

]

.

Dividing by T and taking T → ∞ yields the result

〈ψ2〉 =
|A|2
2
.

Here we hardly needed any complex math at all, just enough to understand how to
get an explicit expression for ψ from the information given.


