Phys 531 Fourier Transforms

In this handout, I will go through the derivations of some of the results I gave in
class (Lecture 14, 10/11). I won’t reintroduce the concepts though, so you’ll want
to refer to the lecture notes and the text. I'll try to provide enough detail in the
calculations to illustrate some of the techniques for working with Fourier transforms.
I hope it is helpful, but you shouldn’t need any of this specific material for the
homework assignments or final exam.

1 Delta Functions

I defined ] ~
d(w) / et dt (1)

:% N

and explained why d(w) = 0 for w # 0 but §(0) = co. A crucial property of the delta
function, however, is that
/ d(w) dw = 1.

oo
I’ll derive this property here.
The infinite bounds on the integrals cause some difficulty, so let us interpret

/ eiwt dt

as

T .
lim et dt.
T—o0 _T
Then define
1 [T
or(w) = —/ et dt
27T -7

so that 0(w) = limy_ 07(w). We can simply integrate to get dr:

1 [T
or(w) / et dt

— % .
_ 1 wwt ’
2w o
1 iwT —iwT
27w (e ¢ )
1
— — sin(wT
— sin(wT)

Now we need to evaluate ffooo dr(w) dw. This is a bit harder. The professional way
to do it is using contour integration, but we can avoid that with some tricks. First,
note that sin(w)/w is symmetric, so

/_OO Sp(w) duw = > /OOO ST 4o

o ™ w

1



Change variables to u = wT', giving

2 [ si
2 / sin(u) .
0

s u

Now, make the unintuitive substitution

1 o0
— = / e " dv
u 0

to get
o 2 o o0 B )
/ or(w) dw = — e “sin(u) dvdu
—o0 T™Jo Jo
1 o o

_ —uv (tu _ —iu
= o e (e e )dudv

_ i/ / [eu(—v—l—i) _ eu(—v—i)} du dv

The u integrals are elementary, giving

o 1 [~/ -1 1
0 dw = — d
/_OO r(w) dw i Jo (—U+i+—v—i) !

1 Ra7)
= — ’ dv
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2 [~ 1
:—/ dv
T Jo 1402

You can look the v integral up, or derive it by substituting v = tan6, so that dv —
sec? 0 df and the limits become 0 to m/2. But also, 1+ v? becomes 1+ tan?§ = sec?§

which cancels the sec? @ term from the differential. The integral becomes fow/ 2 do =

/2, so that
/ or(w)dw = 1.

[e.e]

Since this holds independently of 7', it is reasonable to conclude that

/ﬁawyw:1. (2)

[e.e]

There are some formal mathematical issues regarding the limit 7" — oo, but we don’t
need to worry about them here.

Our result (2), combined with the other properties of §(w) that we know, is enough
to establish that for any function F'(w),

/F(w)5(w —wp) dw = F(wp) (3)

which is the main result we’ll need. It applies not only to frequency integrals; more
generally, we have

[%F@ww—%yw:Fw@

[e.9]

for any variable u.



2 Calculating Transforms

On slide 29 of the lecture, I gave a table with the Fourier transforms of several
functions. We did the first in class, and I'll go through the rest here. At the back of
this handout, I’ll repeat the table for both space and time transforms.

The second and third lines of the table are easy. If f(t) = e~ then

F(w) — / eiwte—iwot dt

—00

— /OO ei(w—wo)t dt

F(w) =270(w — wp)

By definition (1), this is

as the table gives. Note that by choosing wg = 0, this gives us the transform of
ft)=1.
If f(t)=0(t —7), then

etS(t — 1) dt

—00

F(w)

TWT
e Y

the third line shown.
The fourth transform listed takes more work. Say f(t) = e~**/7. Then

F(w):/ e C/T ety

_ / €_t2/T2+thdt.

We can simplify the integrand with a trick called “completing the square.” Note that

12 S 12 . iwr\ 2 iwr\ 2
—ﬁ‘l"lwt——ﬁ—l-'lwt— 7 + T 5

since we're just adding and subtracting the same thing. But the first three terms can
be factored:

12 4ot WT 2 + WT 2 t WT 2 w3r?
—— +iwt — | — — ) === — — .
2 2 2 T2 4

F(w) — e—w272/4 /OO e—(t/T—iu)T/Q)2 dt

So we get

Change variables to u = t/7 —iw7/2. Then dt — 7 du, and the limits of the integral
don’t change since they are infinite. Actually, that’s a bit tricky: the limits really
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become something like oo — iwT/2, which isn’t quite the same thing as plain oco.
Sometimes the imaginary bit matters, but not here, so we’ll just ignore it. (For
people who know something about contour integrals, we can displace the integration
path back to the real axis because the integrand has no poles.)

In any case, we get

F(w) = Te_w272/4/ e du.

You could just look the final integral up, but I'll show you how to solve it for yourself.
Define its value to be I: -
I= / e du.

12:/ e_“2du/ e dv

where we introduce v to keep track of which integral is which. Combined, we have

I? = // e~ W% oy do.

Now do this double integral in polar coordinates: (u,v) — (r,0), where u = r cosf
and v = rsinf. Then dudv — rdrdf and we have

2 fe’e)
I’ = / / re™" dr df
o Jo

The 6 integral gives a factor of 27, and the r integral can be done with the substitution

s =7r2. Then ds = 2r dr so .
I’ = 7T/ e %ds.
0

The s integral is just unity, so /> = 7. But then I = /7 and

Then consider

F(w) =17 oW T/

as the table indicates.

3 Convolution Theorem

The convolution theorem states that if F'(w) = Fj(w)Fs(w), then

£(t) = / A fult —T) T,

where F, F} and Iy are respectively the transforms of f, f; and f5. This is fairly easy
to prove.



We have

() = % /_ 7 Fw)e dw

1 - —iw
=5 Fi(w)Fy(w)e ™" dw.

— 00

w) = /_OO fl(tl)€i“)t1 dtl
w) = /_OO fg(t2)ei“’t2 dtQ

Again, we can always relabel integration variables as we like.
Combining all these, we have

1 ,
= % // fl (tl)fg (t2)ezw(t1+t2—t) dtl dtg dw.

Do the w integral first, so that

10 =g [[ 5test | [~ et an) dna,

oo

But in turn,

and

You should recognize the expression in brackets as 2wd(ty + to — t), so

= // fi(t) fo(t2)0(ts + 2 — t) diy diy.

Use the d-function to do the t, integral, so that we can replace t5 with t — ¢; to get

— /_OO fl(tl)fg(t - tl) dtl

Relabeling t; — T gives us our convolution result.
The correlation theorem and Parseval’s theorem have derivations very similar to
that of the convolution theorem. I'll go through Parseval’s to demonstrate. The

theorem states that - 1
2 2
/ F@Pd= o [ F@)Pd

— 00

if f and F' are a Fourier transform pair. Con81der

/:H |dw_/ U ft MldtH/ ( ‘“’t?dtQ} dw.

Again, reorder the integral to do the w one first:

/ R () dw = / F(t) £ (t2) [ / " ewl-ww] dt, d.
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The term in brackets is 2md(t; — t3) so

/_| |2w—27r/ / ) F5(t2)6(ty — to) dty dty

and using the J-function gives Parseval’s theorem:

[ ir@pds =2 [ fe)rwin =2x [ Is0Pa

—0o —o —0o0
4 Transform pairs

Finally, one thing I didn’t really go through in class is how to get the inverse Fourier
transform of a function F'(w) that has the same “form” as some ¢(t) whose transform
you know already. For instance, in class (slide 24), I calculated the inverse transform
of a square pulse function F'(w). We already knew the transform of a square pulse in
time, and we could have used that information to obtain f(¢) rather than doing the
integral. The technique is nice to know, so I'll go through it here.

Say we know that g(t) has transform G(w). Then suppose we're given F(w) =
g(w). That looks a little funny, so here’s an example: Say ¢(t) = cos(at) for some
constant a. Then G(w) = 7[d(w — a) + §(w + a)]. The question is: if we're given a
transform F'(w) = cos(aw), what is f(t)? Obviously, a must have different units in
F', but the form is the same as g.

We want
1 [ ,
F1) = 5 /_ e
_ i = ( ) —iwtd
=5 g(w)e w.

— 00

Now we know

— 1 = —iwt
g(t) = Dy /_oo Gw)e ™" dw

so just relabeling variables t — w and w — t; gives

e |
- / G(t)e " dt,.

Substitute this into the expression for f(t)

/ / G(t1)e™ ) dty duw.
27T

Once again, do the w integral first

e o[

1 e}
= —W/ G(t1)0(t + t1) dt;

1




which is the desired result.
So in our example, if we have F(w) = cos(aw), then

FE) = — [5(—t — a) + 5(—t + a)].

:27r

This can be simplified since d(—t) = 6(t), so

FE) = -2 [5(t + a) + 6(t — a)].

:27r

For another example, apply this to the calculation we did in class. We wanted the

inverse transform of
1 if < Wm
Flo) = { if lw| <w

0 else
We know that the function g,

Loifp <
gl(t):{'r |‘ 2

0 else

has Fourier transform

wT
Gl(W) = ginc (y) .
Use the linearity properties to see that

o(0) = {1 if |t| < a

0 else

has transform G(w) = 2asinc(wa). Then our F(w) = g(w) with a = w,, so

1 m .

f(t) = —G(—t) = — [2wp, sinc(—twy,)] = Y sinc(wpt)
2m 2m s

since sinc(—wt) = sinc(wt). This agrees with the result we got in class by just doing

the integral.

5 Summary

I've presented a pretty quick run through some of the important properties of Fourier
transforms. Again, a lot of this is more complicated than what we’ll be doing in class:
I'll try to focus more on optics than on math. Nonetheless, you will be seeing many
of these ideas again, and I hope that filling out some of the steps will help everyone
feel more confident using the Fourier technique.



6 Transform Tables

Time Transforms:

Space Transforms:

f(t) F(w)
1 {ltl <3} 7 sinc ()
e iwot 27 (w — wp)
5(t — 1) et

—12 /72 /T
ft+71) e T F(w)
e~ ot £(t) F(w — wyp)
f(z) F(k)
1 {lz] < ¢} asinc (&2)
gikos 276k — ko)
d(x —a) e~ tha
o—7%/a? ay/Te K/
f(x +a) ek (k)
etk f () F(k — ko)



