
Phys 531 Lecture 12 4 October 2005

Optical System Design

Last time:

Surveyed examples of optical systems

Today, discuss system design

Lens design = course of its own

(not taught by me!)

Try to give some general guidelines

Practical advice from my experience
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Outline:

• Resolution limits

• Numerical aperture and f-number

• Aberrations

• Ray tracing software

• Lens design

• Laboratory systems

This will finish unit on ray optics

Next time:

Superposition and interference of waves
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Resolution Limits

Basic question: given point-like object,

how sharp will image be?

Relevant to:

Imaging resolution -

Can two nearby stars be distinguished?

Focusing power -

How high an irradiance can be generated?

Question: Before talking about imaging, is it really possible

to have a point object?
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First, can we use ray optics?

Previous said ray optics valid for d <
a2

λ

a = transverse size

d = propagation distance

For focusing system, a is changing:

Solve properly later. For now, use handwaving. . .
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Zoom in on focus point:

a

a

d

θ

Focal spot radius a

Incoming ray angle θ

Propagation distance d
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Claim relevant propagation distance is

d =
a

θ

= enough distance for spot size to double

Want d <
a2

λ
so a >

λ

θ

For smaller a, ray optics not valid
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In terms of lens, θ =
D

2f

D = lens diameter
f = lens focal length

(assuming distant object)

Then need a > 2
λf

D

Actual result from wave optics:

a >= 1.22
λf

D

Write amin = aDL
= diffraction-limited spot size
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So ray optics valid for image size a > aDL

Within ray optics, get a = aR

limited by lens imperfections = aberrations

Perfect lens makes aR = 0: violates validity

No real lens is perfect

To get aR ≈ aDL, need surface accuracy ≈ λ/4

If aR < aDL, say system is

diffraction limited

= as good as possible
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Spherical lenses:

aberrations increase with ray angle

Close to perfect for paraxial rays

(still limited by accuracy of sphere)

Characterize deviation from paraxial with:

• Numerical aperture

• f-number
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Numerical aperture (NA) (Hecht 5.7.5)

Define NA = sin θmax

θmax = maximum acceptance angle

Set by entrance pupil

Low NA = more paraxial

NA used to describe:

- microscope objectives

- lamp condensers

(collimates light from filament or arc)

- beam focusing optics

(θmax from exit pupil)
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Define f-number = f/D (Hecht 5.3.3)

f = focal length

D = lens diameter

Uses strange notation:

Write as: f/# =
f

D

If f = 100 mm and D = 10 mm, lens is f/10

Used for:

- simple lenses

- camera lenses

- telescopes
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For paraxial rays, f/# =
1

2θ
=

1

2NA

f

D
θ

So low NA = high f/# = paraxial system

Say lens is “slow”

High NA = low f/# = “fast” lens

Even slow lens nonparaxial for off-axis object

Usually limited by field stop
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Generally, fast lens is good

Large D = collect more light

Short f = use less space

But aberrations grow as θ increases

Question: In bright light, your eye’s pupil contracts. Do

you think you have better visual resolution in sun light or

moon light?
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Trade off:

Note aR decreases with f/#

but aDL = 1.22
λf

D
= 1.22λ × (f/#)

increases with f/#

Any lens system has optimum aperture stop

that gives best resolution

Larger AS still useful:

collect more light

sometimes resolution not important
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When can you ignore aberrations?

• Working with narrow laser beams

Typical beam diameter = few mm

Typical f = 50 – 1000 mm

So have f/15 or greater

aberrations not very important

• Non imaging detectors

Just need image smaller than detector area

• Imaging smooth objects

Resolution limits irrelevant if a � feature size

Otherwise, aberrations important
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Aberrations (Hecht 6.3)

Aberrations can be described analytically:

Third-order theory

Paraxial approximation: sin θ ≈ θ

Third-order theory: sin θ ≈ θ −
θ3
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Work out how additional terms affect aR

Categorize effects
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Third-order theory pretty messy

Also, still an approximation

fails for high NA systems

Better to use computer to trace rays exactly

Numerical ray tracing

But categorization still useful
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Classification of aberrations:

• Spherical aberration

• Coma

• Astigmatism

• Field curvature

• Distortion

• Chromatic aberration

Hecht covers in some detail

More math: Klein and Furtak
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Spherical aberration

= basic error due to spherical surface

rays at edge of lens don’t focus right

Blurs image uniformly

Also shifts image plane

Object Image

Often dominant error
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Coma

= imaging error for off-axis points

Limits useable field of view

Object Image
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Astigmatism

= asymmetry for horizontal and vertical rays

Rays focus in different planes

Caused by lens asymmetry or off-axis object

Object Image

or

Best focus in between: get uniform blur

Laser beams often astigmatic
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Field curvature:

= focal length different for off-axis points

Image “plane” is curved

With flat detector, can’t focus all points at once

Object Image

or

Again, best focus is compromise
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Distortion:

= magnification depends on object location

Image in focus, but not accurate

Object Image

Can correct with post-processing
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Chromatic aberration

Different: not a surface error

Due to n = n(ω)

Focal length depends on n: depends on ω

⇒ focal length different for different colors

Typically
∆f

f
≈ few percent

Effect still worse for lower f/#
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red   
blue

vs:

Chromatic aberration usually very important
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Ray Tracing

Categories useful for talking about aberrations

What if you want to calculate them?

Use ray tracing software

Many good programs

Industry standard: Zemax

costs $2000

I’ve used OSLO: free student version

Many others. . . check the web
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Basic job: trace rays through system exactly

Set up in many different ways

gets pretty complicated

Generally hard to use

Most useful feature:

Calculate point-spread function

= (ray optics) image produced by point source

Pretty much all you need to know

Also nice:

Autofocus automatically finds best image plane
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Lens Design

Use multiple surfaces, materials:

more degrees of freedom

Allows you to cancel aberrations to some precision

Simplest example:

achromat doublet (Hecht 6.3.2)

Reduces chromatic aberration
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Idea: make positive ftot lens using two pieces

1: strong positive lens f < ftot

using glass with low dn/dω

Gives moderate positive aberration

2: weak negative lens |f | > ftot

using glass with high dn/dω

Gives moderate negative aberration

Put together, get desired ftot

chromatic aberrations cancel
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Positive:

red    
blue

Negative: red
blue   

Total:

red + blue     
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Do similar tricks with other aberrations

Use ray trace software to get right

(catalog of glasses already in program)

Good achromat design: other aberrations reduced

performance much better than singlet
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System design guidelines

In laboratory research, don’t want to design lenses

Use off-the-shelf components

Some recommended companies:

ThorLabs - good price

CVI Laser - good quality

Melles Griot - wide selection

Newport - wide selection + good quality

Oriel - specialized components
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What can you buy?

Singlet lenses:

PCX BCV PCV   BCX

(PCX = plano-convex; BCV = biconcave; etc)

Cost about $25 for 25 mm diameter lens

$10 more for anti-reflection coating
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Singlet Performance

Proper use:

PCX and PCV lenses best at infinite conjugate

= image or object at ∞

Want collimated rays on curved side:

“flat to focus”

Diffraction limited to about f/15

(for on-axis, monochromatic aberrations)
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BCX and BCV lenses best at unity conjugate

si = so

Again, diffraction limited to f/15

Question: What angle θ does f/15 correspond to?

Generally, conjugate ratio ≡ smax/smin

for conjugate ratio > 5, use plano lens

for conjugate ratio < 5, use symmetric lens
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Can also buy achromat doublets

Cost $100 (with coating)

Optimized for infinite conjugate

- flatter side still faces focus

Diffraction limited to about f/5
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For lower f/#, use microscope objective

→ higher NA

Wide variety: cost $100 to $5000

Typically up to NA = 0.9

even better with tricks

Limited to small aperture, short focal length

problem if you can’t get close to object

or if you have a big beam

Can get apertures up to about 1 cm
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Can also get custom optical systems

optical engineer will design and build to spec

Typically costs $10k or more

When should you consider this?

- Custom materials for IR or UV applications

- Require high NA with large aperture
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For ordinary imaging, camera lenses good

Wide range of choices (too wide!)

cost $100 and up

Features:

- Low off-axis aberrations

- Excellent chromatic correction

- Variable aperture, magnification

Disadvantages:

- Usually not diffraction limited

- Rarely work well with laser beams
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Summary

• Non-paraxial rays often important in

practice

• Classify imaging errors with aberration

theory

• Calculate errors with ray tracing software

• Lab design: use singlets and doublets

Need to know performance limitations
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