
Phys 531 Lecture 15 13 October 2005

Fourier Approach to Wave Propagation

Last time, reviewed Fourier transform

Write any function of space/time =

sum of harmonic functions ei(k·r−ωt)

Actual waves:

harmonic functions restricted k2 = n2ω2/c2

Today, apply Fourier to wave propagtion

Start to study diffraction
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Outline:

• Diffraction

• Fourier approach

• Transfer function

• Fresnel approximation

• Gaussian example

Note: we won’t be following book very well

- Hecht Ch. 10 takes different approach

- Ch. 11: Fourier approach, based on Ch. 10

Next time, continue development
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Diffraction

Previously said ray optics fails

- small feature sizes a

- long propagation distances d

Need d � a2/λ

Otherwise see diffraction

light spreads out

Demo!
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Want to understand diffraction

and calculate effects

Note: already have one way to understand:

scattering picture

Recall HW 2:

a

Plane wave incident on sphere

diameter a
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Ray optics:

Transmitted light has shadow diameter a

Propagates indefinitely

Wrong!

Scattering picture:

Shadow due to forward scattered field

In shadow, Etot = Einc + Escat ≈ 0

To sides, Escat fields cancel out
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But forward scattering not perfectly forward

at angle θ ∼ λ/a, Escat significant

a

θ

At small angle, Escat from all atoms ≈ in phase
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Similar to two slit interference

a
θ

Get large peak when fields from slits in phase
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Diffraction in scattering picture:

Escat fields don’t cancel perfectly for finite object

General prediction:

Diffraction angle θ ≈ λ/a

Valid, but hard to calculate more precisely

Come back to idea later
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Fourier Treatment

Use math

Set up problem:

Suppose monochromatic field, frequency ω

propagating towards +z (perhaps at angle)

Specify E(r, t) in plane z = 0

(= plane of slits, aperture)

Ask: What is E(r, t) for z > 0?

Don’t worry about 3D objects like sphere

Sphere ≈ disk
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Monochromatic: write E(r, t) = E(r)e−iωt

just consider E(r)

Field known at z = 0:

Write E(x, y, z = 0) = A(x, y)

Call A(x, y) = aperture function

Usually look at diffraction from aperture

A(x, y) = 0 for points outside aperture

A(x, y) = E(x, y,0) for points inside aperture

(Stop using A for amplitude)
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Example:

Plane wave Einc = E0ei[k(z cos θ+x sin θ)−ωt]

travelling at angle θ to z-axis

Incident on square aperture side a,

centered at x = x0, y = y0

Then

A(x, y) =







E0eikx sin θ (|x − x0|, |y − y0| < a/2)

0 else

Think of A(x, y) as initial condition

want to solve for E(x, y, z)
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Apply Fourier ideas

First thought:

E(x, y, z) =
1

(2π)3

∫∫∫

E(k)eik·r d3k

If we knew E(k), problem solved

Do have

A(x, y) =
1

(2π)3

∫∫∫

E(k)ei(kxx+kyy) d3k

Can we invert to get E(k) from A(x, y)?

No: E(k) =

∫∫∫

E(x, y, z)ei(kxx+kyy+kzz) dx dy dz
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Second thought:

Have A(x, y) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy) dkx dky

with A(kx, ky) =

∫∫

A(x, y)ei(kxx+kyy) dx dy

No problem getting A(kx, ky)

Can we get E(x, y, z) from A?

Yes!
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Develop with example:

Suppose A(x, y) = E0ei(βx)

harmonic function

What function E(x, y, z) would give us this A?

Already know answer:

E(r) = E0ei(βx+kzz) for some kz

Plane wave

In this case, easy to guess form of solution
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What is kz?

Have k2 = k2
x + k2

y + k2
z = n2ω2/c2

ω, n given

For our function kx = β and ky = 0, so

k2
z = k2 − β2

kz =

√

k2 − β2

Full solution is

E(r) = E0ei(βx+z
√

k2−β2)

Question: Could I use kz = −
√

k2 − β2 instead?
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In general, if A(x, y) = E0ei(kxx+kyy), get solution

E(r) = E0ei(kxx+kyy+κz)

for κ ≡
√

k2 − k2
x − k2

y

Solution to problem for particular form A(x, y)

Important to understand this!

Question: If A(x, y) = E0, what is E(x, y, z)?
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With Fourier transform,

A(x, y) = sum of harmonic funcs

So solution E(r) = sum of plane waves

with κ =
√

k2 − k2
x − k2

y

If A(x, y) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy) dkx dky

then E(r) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy+κz) dkx dky
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Simple example: A(x, y) = E0 cos(βx)

One solution:

A(x, y) =
E0

2

(

eiβx + e−iβx
)

= sum of harmonic funcs

Then

E(r) =
E0

2

(

ei(βx+z
√

k2−β2) + ei(−βx+z
√

k2−β2
)

= E0eiz
√

k2−β2
cos(βx)
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Another solution:

Recall transform of eiβx is 2πδ(kx − β)

So

A(kx, ky) = 2π2E0

[

δ(kx − β) + δ(kx + β)
]

δ(ky)

So

E(r) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy+κz) dkx dky

=
1

(2π)2

{

2π2E0

[

ei(βx+κz) + ei(−βx+κz)
]}

= E0eiκz cos(βx)

for κ =
√

k2 − β2
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Either method fine

Note, solution is physically interesting:

Two plane waves, angle θ = tan−1(β/κ)

θ

Implement with glass plate, sinusoidal markings

simple diffraction grating
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Another example:

Plane wave normally incident on square hole

A(x, y) =







1 (|x|, |y| < a/2)

0 (else)

Then

A(kx, ky) =
∫∫

A(x, y)ei(kxx+kyy) dx dy

=

(

∫ a/2

−a/2
eikxx dx

)(

∫ a/2

−a/2
eikyy dy

)

= a2 sinc

(

kxa

2

)

sinc

(

kya

2

)
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and

E(r) =
a2

(2π)2

∫∫

sinc

(

kxa

2

)

sinc

(

kya

2

)

× e
i
(

kxx+kyy+z
√

k2−k2
x−k2

y

)

dkx dky

Can’t do this integral analytically

- square root in exponent is hard!

Need to introduce some approximations

First, study what we’ll approximate
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Transfer Function

General result

E(r) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy+κz) dkx dky

Can write as

E(r) =
1

(2π)2

∫∫

A(kx, ky)H(kx, ky)e
i(kxx+kyy) dkx dky

for H(kx, ky) = e
iz
√

k2−k2
x−k2

y

Call H = transfer function for free space
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Note H depends on z = propagation distance

More general:

Hd(kx, ky) = e
id
√

k2−k2
x−k2

y

propagates field from z0 to z0 + d

Call E(x, y, z0) = input, E(x, y, z0 + d) = ouput

Linear system: output depends linearly on input

Transfer function = linear coefficients

but in Fourier space
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Hd = e
id
√

k2−k2
x+k2

y

For k2
x + k2

y < k2, have |H| = 1

kz is real

But for k2
x + k2

y > k2, have

|H| = e
−d
√

k2
x+k2

y−k2

< 1

kz is imaginary!

Plot magnitude and phase
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Is it possible to have k2
x + k2

y > k2?

Yes: can make arbitrary apertures

If feature size . λ, will have

A(kx, ky) 6= 0 for large kx, ky

Example: square hole with a = 10 nm

For large kx, ky, H decays with d

⇒ E(r) decays with d

Have seen before: evanescent wave
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For aperture with small hole,

field doesn’t propagate away

Can’t “fit” wave through hole smaller than λ/2π

Limits imaging resolution of microscope:

images of small features don’t propagate

But, can measure evanescent wave itself:

called near field microscopy

Place detector very close to surface

resolution ≈ surface distance/2π
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Fresnel Approximation

Note, large kx, ky ⇒ large propagation angle θ

sin θ =

√

k2
x + k2

y

k
But usually interested in small θ ≈ paraxial

Evanescent wave behavior irrelevant

Suggests approximation

√

k2 − k2
x − k2

y ≈ k −
k2
x + k2

y

2k

so Hd ≈ eikd e−id(k2
x+k2

y )/2k
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Called Fresnel approximation

Gives diffracted field E(x, y, z) =

eikz

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy) e−iz(k2

x+k2
y )/2k dkx dky

Integrals more manageable

Still hard to get analytic result

but numerical integration is straightforward
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Valid when next term in expansion is small

Next term in Taylor series of d
√

k2 − k2
x − k2

y

=
d(k2

x + k2
y)

2

8k3

For propagation angle

θ ≈

√

k2
x + k2

y

k
, need kdθ4 � 1

More physics of Fresnel approxmation next class

For now:

one example where analytic solution possible
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Gaussian beam

Suppose A(x, y) = E0e−(x2+y2)/w2
0

Gaussian function, width w0

Make with glass filter:

- transparent in center

- smoothly becomes opaque at edge

Turns out, this field produced naturally by laser

→ practically important

Calculate E(x, y, z)
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Need transform A(kx, ky)

Transform of Gaussian e−x2/w2
0 is w0

√
πe−w2

0k2
x/4

So A(kx, ky) = E0πw2
0e−w2

0(k
2
x+k2

y )/4

With Fresnel approximation

E(r) =
eikz

(2π)2
E0πw2

0

×
∫∫

e−w2
0(k

2
x+k2

y )/4 e−iz(k2
x+k2

y )/2k ei(kxx+kyy) dkx dky

Define q2 = w2
0 + i2z/k
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Then

E(r) =
eikz

(2π)2
E0πw2

0

×
∫∫

e−q2(k2
x+k2

y)/4 ei(kxx+kyy) dkx dky

= eikzE0πw2
0

× 1

2π

∫ ∞

−∞
e−q2k2

x/4 eikxx dkx

× 1

2π

∫ ∞

−∞
e−q2k2

y/4 eikyy dky

Inverse transforms of Gaussians
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So

E(r) = E0eikzπw2
0

(

1

q
√

π
e−x2/q2

)(

1

q
√

π
e−y2/q2

)

= E0eikzw2
0

q2
e−(x2+y2)/q2

Solved!

Field remains Gaussian

But complicated since q is complex
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Calculate |E(r)|2

Use
1

q2
=

1

w2
0 + i2z/k

=
w2

0 − i2z/k

w4
0 + 4z2/k2

≡ 1

w2

(

1 − i
2z

kw2
0

)

for

w2 = w2
0 +

4z2

k2w2
0

=
|q|4
w2

0
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Then

|E(r)|2 = |E0|2
w4

0

|q|4
e−2(x2+y2)/w2

= |E0|2
w2

0

w2
e−2(x2+y2)/w2

Irradiance remains Gaussian, but size expands

w(z) =

√

√

√

√w2
0 +

λ2z2

π2w2
0

→ λz

πw0

Divergence angle θ = λ/πw0 ≈ λ/a

feature size a
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For large w0, divergence is slow

Light propagates ≈ uniformly

Call solution Gaussian beam

always Gaussian profile

More on Gaussian beams later in course
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Summary:

• Diffraction due to wave nature of light

• Can use Fourier analysis to calculate

- E(x, y,0) → A(kx, ky)

- know kz = (k2 − k2
x − k2

y)
1/2

• Transfer function: E(z) → E(z + d)

Ad = HdA
Hd = eikzd

• Fresnel approximation: expansion of Hd

• Apply to Gaussian beam ≈ laser beam
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