
Phys 531 Lecture 16 18 October 2005

Huygens-Fresnel Theory and Fraunhofer
Diffraction

Last time, started looking at diffraction

= spreading of light after aperture

Applied Fourier techniques to calculate

Continue discussion today

Focus on approximations and interpretation
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Outline:

• Review

- Connect to general systems methods

• Propagation as convolution

- Huygens-Fresnel theory

• Fraunhofer diffraction

Next time: applications of diffraction
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Review

Problem:

Given E = A(x, y) in plane z = 0

Want to calculate E(x, y, z)

Key insight:

If A(x, y) is a harmonic function, know how to solve
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Say A(x, y) = E0ei(kxx+kyy)

Then plane wave E(r) = E0ei(kxx+kyy+kzz)

satisfies E(x, y,0) = A(x, y) for any kz

Want E(r) = solution of wave equation

⇒ require k2 = k2
x + k2

y + k2
z = n2ω2/c2

(assume n and ω known)

So need kz = ±κ = ±
√

k2 − k2
x − k2

y

+ for wave travelling toward positive z
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So we can solve problem for harmonic A(x, y)

Wave equation is linear:

If A(x, y) = sum of harmonic funcs

Then solution = sum of plane waves

Fourier transform:

Express any A as sum of harmonic funcs:

A(x, y) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy) dkx dky

Each term ei(kxx+kyy) → ei(kxx+kyy+κz)
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So general solution is

E(x, y, z) =
1

(2π)2

∫∫

A(kx, ky)e
i(kxx+kyy+κz) dkx dky

with κ =
√

k2 − k2
x − k2

y

Or write as

E(x, y, z) =
1

(2π)2

∫∫

A(kx, ky)H(kx, ky)e
i(kxx+kyy) dkx dky

with H = eiz
√

k2−k2
x−k2

y ≡ transfer function

6



More on transfer functions:

Think of propagation as “system”

A(x, y) = input to system

E(x, y, z) = output

Or more generally:

E(x, y, z0) ≡ A(x, y) = input

E(x, y, z0 + d) ≡ Ad(x, y) = output

Transfer function relates output to input
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General definition:

Hd(kx, ky) =
output

input
=

Ad(x, y)

A(x, y)

for particular case when input is harmonic

A(x, y) = E0ei(kxx+kyy)

Here Ad = E0ei(kxx+kyy+κd) so Hd = eiκd

Question: In the definition above, it looks like H should

depend on x and y. Why doesn’t it?
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Transfer function idea applies to any linear system

Harmonic input always easy to solve

Example: mass on spring

input = force on mass F (t)

output = steady state position x(t) x

Or (voltage, current) in RLC circuit

Or (drive, response) of NMR sample
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Simple harmonic oscillator:

ẍ + γẋ + ω2
0x = f(t)

where ω0 = natural oscillation frequency

γ = damping coefficient

f(t) = F (t)/m

Solve for arbitrary f(t)

Actually kind of hard
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But solving for f = f0e−iωt is easy

Try x = x0e−iωt:

Get − ω2x0 − iγωx0 + ω2
0x0 = f0

So x(t) =
1

ω2
0 − iγω − ω2

f(t)

Then transfer function is

H(ω) =
x(t)

f(t)
=

1

ω2
0 − iγω − ω2
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For general f(t), have

f(t) =
1

2π

∫

F(ω)e−iωtdω

So general solution is

x(t) =
1

2π

∫

F(ω)H(ω)e−iωtdω

Integral might be hard to do analytically,

but problem is solved

Same basic method as in optics
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Back to optics...

Use approximations to simplify solution

Start with Fresnel approximation:

κ =
√

k2 − k2
x − k2

y ≈ k −
k2
x + k2

y

2k

Valid for kx, ky � k: small propagation angles θ

Then Hd(kx, ky) ≈ eikd e−id(k2
x+k2

y )/2k

Used to solve Gaussian beam problem
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Convolutions

Another way to look at solution

Have

Ad(x, y) =
1

(2π)2

∫∫

A(kx, ky)Hd(kx, ky)e
i(kxx+kyy) dkx dky

Fourier transform says

Ad(x, y) =
1

(2π)2

∫∫

Ad(kx, ky)e
i(kxx+kyy) dkx dky

So Ad = AHd
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Recall convolution theorem:

If F (ω) = F1(ω)F2(ω) then

f(t) =

∫ ∞

−∞
f1(T )f2(t − T ) dT

We have 2D version:

Ad(kx, ky) = A(kx, ky)H(kx, ky)

so Ad(x, y) =

∫∫

A(X, Y )hd(x − X, y − Y ) dX dY

where hd(x, y) = inverse transform of Hd

Let’s work out hd in Fresnel approximation
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Have hd(x, y) =

1

(2π)2

∫∫

eikde−id(k2
x+k2

y )/2kei(kxx+kyy) dkx dky

= eikd
(

1

2π

∫ ∞

−∞
e−idk2

x/2k eikxx dkx

)

×
(

1

2π

∫ ∞

−∞
e−idk2

y/2k eikyy dky

)

Gaussian transforms

e−k2
xq2/4 → 1

q
√

π
e−x2/q2

Here q2 = 2id/k
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So h(x, y) =
eikd

πq2
e−(x2+y2)/q2

=
keikd

2iπd
e−k(x2+y2)/(2id)

h(x, y) = −i
eikd

λd
eik(x2+y2)/2d

where λ = 2π/k

Question: Do the units (m−2) for h make sense?
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Interesting fact:

Write hd as hd(x, y) = − i

λd
e
ik

(

d+x2+y2

2d

)

Note that d +
x2 + y2

2d
≈

√

x2 + y2 + d2

for d � x, y

But d = z − z0, so hd(x, y) = − i

λ

eikr

r

for r =
√

x2 + y2 + (z − z0)
2

and d ≈ r in denominator
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So hd(x, y) ≈ spherical wave centered at (0,0, z0)

Look again at expression for fields:

Ad(x, y) =

∫∫

A(X, Y )hd(x − X, y − Y ) dX dY

Set z0 = 0 for simplicity

Then Ad(x, y) = E(x, y, z) and A(x, y) = E(x, y,0)

So

E(x, y, z) =
∫∫

E(X, Y,0)hz(x −X, y − Y ) dX dY
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E(x, y, z) =

∫∫

E(X, Y,0)hz(x − X, y − Y ) dX dY

or E(r) = − i

λ

∫∫

E(R)
eik|R−r|

|R − r|
dX dY

for r = (x, y, z), R = (X, Y,0)

Interpretation:

- Each point R in input plane acts as source of

spherical wave amplitude ∝ E(R)

- Total field at r in output plane = sum of spherical

waves from different R’s
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Fresnel-Huygens picture (Hecht 4.4.2)

Each point on wavefront = source of new waves

- call new waves “Huygens’s wavelets”

Sphere wave:

new wavefronts    

Plane wave:
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Completely different way of looking at diffraction:

no Fourier transform involved

Huygens’s principle is often starting point

Hecht Ch 10, and other texts

Offers easier, intuitive picture

Disadvantages:

• Not obvious why it’s true

• Doesn’t give amplitude factor −i/λ

• Often Fourier space integral is easier

• Easily confused with scattering ideas
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Scattering and Huygens

In a real medium with n 6= 1,

each point is source of new wave Escat

(and Escat ≈ spherical wave)

But total field = Einc + Escat

In Huygens picture, Escat is total field

Imagine vacuum is dense elastic medium:

Disturbance comes from motion of nearby points

Sum over nearby points = sum over Escat

= total field
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But vacuum is not elastic medium!

Light = EM wave, only sources are charges

no charge in vacuum, so no source

Confusing: Huygens picture not “real”

- just a way of interpreting an integral

Interesting that Maxwell equations suggest

that vacuum acts “sort of like” a medium

But not fundamental
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We’ll stick to Fourier picture

Still

Ad(x, y) =

∫∫

A(X, Y )h(x − X, y − Y ) dX dY

is very useful

In systems language,

h = impulse-response function

If A(X, Y ) = E0δ(X, Y ), then

Ad(x, y) = E0h(x, y)

h(x, y) = field produced by point source

makes sense, = spherical wave
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General system:

impulse-response function and transfer function

are Fourier transforms

For harmonic oscillator example:

h(t) =







0 (t < 0)
1
ω′e

−γt/2 sin(ω′t) (t > 0)

for ω′ =
√

ω2
0 + γ2/4 = shifted oscillation frequency

h(t) = free decay of oscillator after kick at t = 0
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Secret for physics grad students:

• impulse-response function

= Green’s function

• transfer function = propagator

Important for EM, condensed matter, quantum

field theory
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Fraunhofer Diffraction (Hecht 10.2)

Drawback of results so far:

integrals are too hard

Even in Fresnel approximation, only Gaussians easy

Develop simpler approximation:

Fraunhofer diffraction
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Idea:

Suppose aperture transmits region size a

(ie, hole in opaque screen)

Diffraction pattern spreads at angle θ ≈ λ/a

Spreads distance ≈ θd

θ
a

d

For θd � a, diffraction not significant

use ray optics
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For θd ≈ a: complicated
Need to use Fresnel integrals

For θd � a: simplifies again

Pattern spread over large area

d

x  

Light reaching position x
corresponds to angle θx = x/d
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But angle θx corresponds to wavenumber kx = θxk

⇒ At large d, wave vector k maps to position

Or: field = sum of plane waves

for d → ∞, plane waves separate

Expect field at (x, y) corresponds to

Fourier component (kx, ky) = (kx/d, ky/d)
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Make precise:

Ad(x, y) =

∫∫

A(X, Y )h(x − X, y − Y ) dX dY

= − i

λd
eikd

∫∫

A(X, Y )eik[(x−X)2+(y−Y )2]/2d dX dY

Consider exponent:

i
k

2d

(

x2 + y2 + X2 + Y 2 − 2xX − 2yY
)

Know X2 + Y 2 < a2 for aperture size a

If ka2/2d � 1, can neglect

or d � ka2/2 ≈ a2/λ
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Then have

Ad(x, y) = − i

λd
eikd eik(x2+y2)/2d

×
∫∫

A(X, Y )e−ik(xX+yY )/d dX dY

But notice that

A(kx, ky) =

∫∫

A(X, Y )e−i(kxX+kyY ) dX dY

integral has same form, kx → kx/d, ky → ky/d

So

Ad(x, y) = − i

λd
eikd eik(x2+y2)/2dA

(

kx

d
,
ky

d

)
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Phase shifts drop out in irradiance:

|Ad(x, y)|2 =
1

λ2d2

∣

∣

∣

∣

A
(

kx

d
,
ky

d

)
∣

∣

∣

∣

2

But phase shift makes sense too:

1

d
eik

[

d+(x2+y2)/2d
]

≈ eikr

r
as before

Diffracted field looks like spherical wave
modulated by A

Question: In spherical wave expression above, what point

in aperture is r supposed to be measured from?
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Finally lets us calculate something

Consider plane wave incident on rectangular slit

a

b   

Then

A(x, y) =







E0 (|x| < a/2, |y| < b/2)

0 (otherwise)

Calculate diffraction pattern for large d
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Know

A(kx, ky) = E0ab sinc

(

kxa

2

)

sinc

(

kyb

2

)

So

|Ad(x, y)|2 =
a2b2

λ2d2
|E0|2 sinc2

(

kxa

2d

)

sinc2
(

kyb

2d

)

Question: Remind us of the definition of sinc one more

time?
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Have sinc(kxa/2d) = 0 when kxa/2d = nπ
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n = nonzero integer

So width of central peak ∆x =
4πd

ka
=

2λd

a

and ∆y =
2λd

b



More on Fraunhofer diffraction next time

Summary:

• Convolution theorem: impulse-response function

- Fourier transform of transfer function

• Interpret as Huygens-Fresnel theory

- Each point in aperture generates spherical wave

• Large d limit: Fraunhofer diffraction

- Diffraction pattern directly from transform
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