Phys 531Lecture 1618 October 2005Huygens-FresnelTheory and FraunhoferDiffraction

Last time, started looking at diffraction

= spreading of light after aperture

Applied Fourier techniques to calculate

Continue discussion today

Focus on approximations and interpretation

1

Outline:

- Review
 - Connect to general systems methods
- Propagation as convolution
 - Huygens-Fresnel theory
- Fraunhofer diffraction

Next time: applications of diffraction

Review

Problem: Given E = A(x, y) in plane z = 0Want to calculate E(x, y, z)

Key insight: If A(x,y) is a harmonic function, know how to solve

-	
≺	
<u> </u>	

Say $A(x,y) = E_0 e^{i(k_x x + k_y y)}$

Then plane wave $E(\mathbf{r}) = E_0 e^{i(k_x x + k_y y + k_z z)}$ satisfies E(x, y, 0) = A(x, y) for any k_z

Want $E(\mathbf{r}) =$ solution of wave equation \Rightarrow require $k^2 = k_x^2 + k_y^2 + k_z^2 = n^2 \omega^2 / c^2$ (assume *n* and ω known)

So need $k_z = \pm \kappa = \pm \sqrt{k^2 - k_x^2 - k_y^2}$ + for wave travelling toward positive z So we can solve problem for harmonic A(x, y)

Wave equation is linear:

If A(x,y) = sum of harmonic funcsThen solution = sum of plane waves

Fourier transform:

Express any A as sum of harmonic funcs:

$$A(x,y) = \frac{1}{(2\pi)^2} \iint \mathcal{A}(k_x,k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$

Each term $e^{i(k_x x + k_y y)} \rightarrow e^{i(k_x x + k_y y + \kappa z)}$

E		
-	۱	
	,	

So general solution is

$$E(x, y, z) = \frac{1}{(2\pi)^2} \iint \mathcal{A}(k_x, k_y) e^{i(k_x x + k_y y + \kappa z)} dk_x dk_y$$

with $\kappa = \sqrt{k^2 - k_x^2 - k_y^2}$

Or write as

 $E(x, y, z) = \frac{1}{(2\pi)^2} \iint \mathcal{A}(k_x, k_y) \mathcal{H}(k_x, k_y) e^{i(k_x x + k_y y)} dk_x dk_y$ with $\mathcal{H} = e^{iz\sqrt{k^2 - k_x^2 - k_y^2}} \equiv \text{transfer function}$ More on transfer functions:

Think of propagation as "system" A(x,y) =input to system E(x,y,z) =output

Or more generally: $E(x, y, z_0) \equiv A(x, y) = \text{input}$ $E(x, y, z_0 + d) \equiv A_d(x, y) = \text{output}$

Transfer function relates output to input

7

General definition:

$$\mathcal{H}_d(k_x, k_y) = \frac{\text{output}}{\text{input}} = \frac{A_d(x, y)}{A(x, y)}$$

for particular case when input is harmonic

$$A(x,y) = E_0 e^{i(k_x x + k_y y)}$$

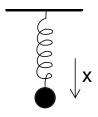
Here
$$A_d = E_0 e^{i(k_x x + k_y y + \kappa d)}$$
 so $\mathcal{H}_d = e^{i\kappa d}$

Question: In the definition above, it looks like \mathcal{H} should depend on x and y. Why doesn't it?

Transfer function idea applies to any linear system

Harmonic input always easy to solve

Example: mass on spring input = force on mass F(t)output = steady state position x(t)



Or (voltage, current) in RLC circuit Or (drive, response) of NMR sample

9

Simple harmonic oscillator:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = f(t)$$

where ω_0 = natural oscillation frequency γ = damping coefficient f(t) = F(t)/m

Solve for arbitrary f(t)Actually kind of hard But solving for $f = f_0 e^{-i\omega t}$ is easy

Try
$$x = x_0 e^{-i\omega t}$$
:
Get $-\omega^2 x_0 - i\gamma \omega x_0 + \omega_0^2 x_0 = f_0$
So $x(t) = \frac{1}{\omega_0^2 - i\gamma \omega - \omega^2} f(t)$

Then transfer function is

$$\mathcal{H}(\omega) = \frac{x(t)}{f(t)} = \frac{1}{\omega_0^2 - i\gamma\omega - \omega^2}$$

11

For general f(t), have

$$f(t) = \frac{1}{2\pi} \int \mathcal{F}(\omega) e^{-i\omega t} d\omega$$

So general solution is

$$x(t) = \frac{1}{2\pi} \int \mathcal{F}(\omega) \mathcal{H}(\omega) e^{-i\omega t} d\omega$$

Integral might be hard to do analytically, but problem is solved Same basic method as in optics Back to optics...

Use approximations to simplify solution Start with Fresnel approximation:

$$\kappa = \sqrt{k^2 - k_x^2 - k_y^2} \approx k - \frac{k_x^2 + k_y^2}{2k}$$

Valid for $k_x, k_y \ll k$: small propagation angles θ

Then
$$\mathcal{H}_d(k_x, k_y) \approx e^{ikd} e^{-id(k_x^2 + k_y^2)/2k}$$

Used to solve Gaussian beam problem

13

Convolutions

Another way to look at solution

Have

$$A_d(x,y) = \frac{1}{(2\pi)^2} \iint \mathcal{A}(k_x,k_y) \mathcal{H}_d(k_x,k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$

Fourier transform says

$$A_d(x,y) = \frac{1}{(2\pi)^2} \iint \mathcal{A}_d(k_x,k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$

So $\mathcal{A}_d = \mathcal{A}\mathcal{H}_d$

Recall convolution theorem:

If
$$F(\omega) = F_1(\omega)F_2(\omega)$$
 then
$$f(t) = \int_{-\infty}^{\infty} f_1(T)f_2(t-T) dT$$

We have 2D version:

$$\mathcal{A}_d(k_x, k_y) = \mathcal{A}(k_x, k_y) \mathcal{H}(k_x, k_y)$$

so $A_d(x, y) = \iint A(X, Y) h_d(x - X, y - Y) dX dY$
where $h_d(x, y)$ = inverse transform of \mathcal{H}_d

Let's work out \boldsymbol{h}_d in Fresnel approximation

15

Have
$$h_d(x, y) =$$

$$\frac{1}{(2\pi)^2} \iint e^{ikd} e^{-id(k_x^2 + k_y^2)/2k} e^{i(k_x x + k_y y)} dk_x dk_y$$

$$= e^{ikd} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-idk_x^2/2k} e^{ik_x x} dk_x \right)$$

$$\times \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-idk_y^2/2k} e^{ik_y y} dk_y \right)$$

Gaussian transforms

$$e^{-k_x^2 q^2/4} \to \frac{1}{q\sqrt{\pi}} e^{-x^2/q^2}$$

Here $q^2 = 2id/k$

So
$$h(x,y) = \frac{e^{ikd}}{\pi q^2} e^{-(x^2 + y^2)/q^2}$$

= $\frac{k e^{ikd}}{2i\pi d} e^{-k(x^2 + y^2)/(2id)}$
 $h(x,y) = -i \frac{e^{ikd}}{\lambda d} e^{ik(x^2 + y^2)/2d}$

where $\lambda = 2\pi/k$

Question: Do the units (m^{-2}) for h make sense?

1	7

Interesting fact:

Write
$$h_d$$
 as $h_d(x, y) = -\frac{i}{\lambda d} e^{ik\left(d + \frac{x^2 + y^2}{2d}\right)}$
Note that $d + \frac{x^2 + y^2}{2d} \approx \sqrt{x^2 + y^2 + d^2}$
for $d \gg x, y$
But $d = z - z_0$, so $h_d(x, y) = -\frac{i}{\lambda} \frac{e^{ikr}}{r}$
for $r = \sqrt{x^2 + y^2 + (z - z_0)^2}$
and $d \approx r$ in denominator

So $h_d(x,y) \approx$ spherical wave centered at $(0,0,z_0)$

Look again at expression for fields:

$$A_d(x,y) = \iint A(X,Y)h_d(x-X,y-Y) \, dX \, dY$$

Set $z_0 = 0$ for simplicity Then $A_d(x,y) = E(x,y,z)$ and A(x,y) = E(x,y,0)So

$$E(x, y, z) = \iint E(X, Y, 0)h_z(x - X, y - Y) \, dX \, dY$$

19

$$E(x, y, z) = \iint E(X, Y, 0) h_z(x - X, y - Y) \, dX \, dY$$

or
$$E(\mathbf{r}) = -\frac{i}{\lambda} \iint E(\mathbf{R}) \frac{e^{ik|\mathbf{R} - \mathbf{r}|}}{|\mathbf{R} - \mathbf{r}|} \, dX \, dY$$

for
$$r = (x, y, z)$$
, $R = (X, Y, 0)$

Interpretation:

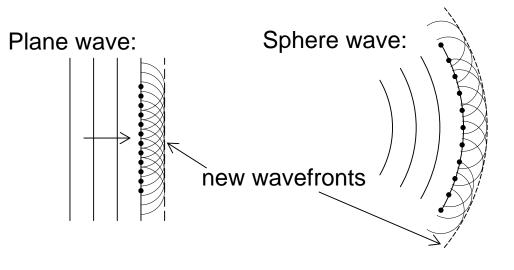
- Each point \mathbf{R} in input plane acts as source of spherical wave amplitude $\propto E(\mathbf{R})$

- Total field at ${\bf r}$ in output plane = sum of spherical waves from different ${\bf R}$'s

Fresnel-Huygens picture (Hecht 4.4.2)

Each point on wavefront = source of new waves

- call new waves "Huygens's wavelets"



21

Completely different way of looking at diffraction: no Fourier transform involved Huygens's principle is often starting point Hecht Ch 10, and other texts

Offers easier, intuitive picture

Disadvantages:

- Not obvious why it's true
- Doesn't give amplitude factor $-i/\lambda$
- Often Fourier space integral is easier
- Easily confused with scattering ideas

Scattering and Huygens

In a real medium with $n \neq 1$, each point *is* source of new wave E_{scat} (and $E_{\text{scat}} \approx$ spherical wave) But total field = $E_{\text{inc}} + E_{\text{scat}}$

In Huygens picture, E_{scat} is total field

Imagine vacuum is dense elastic medium: Disturbance comes from motion of nearby points Sum over nearby points = sum over E_{scat} = total field

23

But vacuum is not elastic medium!

- Light = EM wave, only sources are charges no charge in vacuum, so no source
- Confusing: Huygens picture not "real" - just a way of interpreting an integral

Interesting that Maxwell equations suggest that vacuum acts "sort of like" a medium

But not fundamental

We'll stick to Fourier picture

Still

$$A_d(x,y) = \iint A(X,Y)h(x-X,y-Y) \, dX \, dY$$

is very useful

In systems language, h = impulse-response function If $A(X,Y) = E_0\delta(X,Y)$, then $A_d(x,y) = E_0h(x,y)$ h(x,y) = field produced by point source

makes sense, = spherical wave

25

General system:

impulse-response function and transfer function are Fourier transforms

For harmonic oscillator example:

$$h(t) = \begin{cases} 0 & (t < 0) \\ \frac{1}{\omega'} e^{-\gamma t/2} \sin(\omega' t) & (t > 0) \end{cases}$$

for $\omega' = \sqrt{\omega_0^2 + \gamma^2/4} =$ shifted oscillation frequency

h(t) = free decay of oscillator after kick at t = 0

Secret for physics grad students:

- impulse-response function
 - = Green's function
- transfer function = propagator

Important for EM, condensed matter, quantum field theory

27

Fraunhofer Diffraction (Hecht 10.2)

Drawback of results so far: integrals are too hard

Even in Fresnel approximation, only Gaussians easy

Develop simpler approximation:

Fraunhofer diffraction

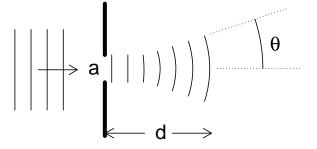
Idea:

Suppose aperture transmits region size a

(ie, hole in opaque screen)

Diffraction pattern spreads at angle $\theta\approx\lambda/a$

Spreads distance $\approx \theta d$

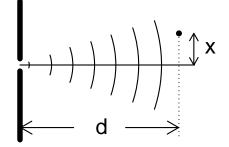


For $\theta d \ll a$, diffraction not significant use ray optics

For $\theta d \approx a$: complicated Need to use Fresnel integrals

For $\theta d \gg a$: simplifies again

Pattern spread over large area



Light reaching position x corresponds to angle $\theta_x = x/d$

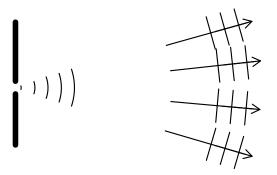
29

But angle θ_x corresponds to wavenumber $k_x = \theta_x k$

 \Rightarrow At large d, wave vector ${f k}$ maps to position

Or: field = sum of plane waves

for $d \to \infty$, plane waves separate



Expect field at (x, y) corresponds to Fourier component $(k_x, k_y) = (kx/d, ky/d)$

31

Make precise:

$$A_d(x,y) = \iint A(X,Y)h(x-X,y-Y) \, dX \, dY$$
$$= -\frac{i}{\lambda d} e^{ikd} \iint A(X,Y) e^{ik[(x-X)^2 + (y-Y)^2]/2d} \, dX \, dY$$

Consider exponent:

$$i\frac{k}{2d}\left(x^{2} + y^{2} + X^{2} + Y^{2} - 2xX - 2yY\right)$$

Know $X^2 + Y^2 < a^2$ for aperture size a

If
$$ka^2/2d \ll 1$$
, can neglect
or $d \gg ka^2/2 \approx a^2/\lambda$

Then have

$$A_d(x,y) = -\frac{i}{\lambda d} e^{ikd} e^{ik(x^2 + y^2)/2d} \\ \times \iint A(X,Y) e^{-ik(xX + yY)/d} dX dY$$

But notice that

$$\mathcal{A}(k_x, k_y) = \iint A(X, Y) e^{-i(k_x X + k_y Y)} dX dY$$

integral has same form, $k_x \rightarrow kx/d$, $k_y \rightarrow ky/d$ So

$$A_d(x,y) = -\frac{i}{\lambda d} e^{ikd} e^{ik(x^2 + y^2)/2d} \mathcal{A}\left(\frac{kx}{d}, \frac{ky}{d}\right)$$

Phase shifts drop out in irradiance:

$$|A_d(x,y)|^2 = \frac{1}{\lambda^2 d^2} \left| \mathcal{A}\left(\frac{kx}{d}, \frac{ky}{d}\right) \right|^2$$

But phase shift makes sense too:

$$\frac{1}{d}e^{ik\left[d+(x^2+y^2)/2d\right]} \approx \frac{e^{ikr}}{r}$$

as before

Diffracted field looks like spherical wave modulated by ${\cal A}$

Question: In spherical wave expression above, what point in aperture is r supposed to be measured from?

Finally lets us calculate something

Consider plane wave incident on rectangular slit

Calculate diffraction pattern for large \boldsymbol{d}

35

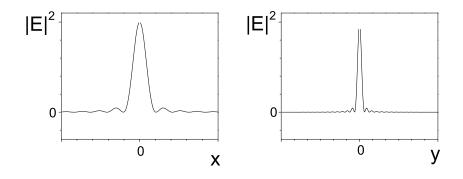
Know

$$\mathcal{A}(k_x, k_y) = E_0 ab \operatorname{sinc}\left(\frac{k_x a}{2}\right) \operatorname{sinc}\left(\frac{k_y b}{2}\right)$$

So

$$|A_d(x,y)|^2 = \frac{a^2b^2}{\lambda^2d^2} |E_0|^2 \operatorname{sinc}^2\left(\frac{kxa}{2d}\right) \operatorname{sinc}^2\left(\frac{kyb}{2d}\right)$$

Question: Remind us of the definition of sinc one more time?



Have sinc(kxa/2d) = 0 when $kxa/2d = n\pi$

37

n= nonzero integer So width of central peak $\Delta x=\frac{4\pi d}{ka}=\frac{2\lambda d}{a}$ and $\Delta y=\frac{2\lambda d}{b}$

More on Fraunhofer diffraction next time

Summary:

- Convolution theorem: impulse-response function
 Fourier transform of transfer function
- Interpret as Huygens-Fresnel theory
 - Each point in aperture generates spherical wave
- Large *d* limit: Fraunhofer diffraction
 Diffraction pattern directly from transform

38