
Phys 531 Lecture 17 20 October 2005

Applications of Diffraction

Last time, developed Fraunhofer diffraction

At large distances, diffracted field

∝ transform of aperture function

Each Fourier component propagates in different

direction

Today, explore Fraunhofer further
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Outline:

• Summary of diffraction regimes

• Diffraction from an array

• Circular apertures

• Diffraction and lenses

Next time, consider fancier applications

- Fourier optics

- Holography
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Diffraction Regimes

Several ways to study diffraction

Choice of method depends on

- wavelength λ

- aperture size a

- propagation distance d

- propagation angle θ

If d � a2/λ, use ray optics

Aperture produces geometric shadow

Get diffraction effects near sharp edges

Noticeable at d ≈ few cm
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For large d and θ & (λ/d)1/4,

need “exact” expression

E(r) =
1

(2π)2

∫∫

A(kx, ky)H(kx, ky)e
i(kxx+kyy) dkx dky

with H(kx, ky) = eid
√

k2−k2
x−k2

y

Still approximate, fails for θ & 1:

- Ignores vector nature of E

- Don’t really know A(x, y):

Depends on aperture thickness, material

Large angle effects very hard

Numerically solve Maxwell equations
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For θ . (λ/d)1/4:

If d ∼ a2/λ, use Fresnel approximation

Either:

H(kx, ky) = eikd e−id(k2
x+k2

y )/2k

with Fourier form

or convolution form:

E(r) =

∫∫

A(X, Y )h(x − X, y − Y ) dX dY

with h(x, y) = −i
eikd

λd
eik(x2+y2)/2d
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If d � a2/λ, use Fraunhofer approximation:

E(r) = − i

λd
eikd eik(x2+y2)/2dA

(

kx

d
,
ky

d

)

Simplest form of diffraction

Also called “far-field” diffraction

Extra important in lens systems

- later today
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Example: square aperture

size a = 1 mm

λ = 500 nm

Then a2/λ = 2 m:

• d < 0.2 m, use ray optics

• 0.2 m < d < 20 m, use Fresnel

• d > 20 m, use Fraunhofer

At d = 2 m, maximum angle for Fresnel

≈ (λ/d)1/4 ≈ 20 mrad ≈ 1◦

Corresponds to distance x = 4 cm

observed pattern size ∼ few mm
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Fraunhofer Examples

First: two slits (Hecht 10.2.2)

b

L

a

Slit width (x) = b

Height (y) = L

Center separation = a

(Hecht’s notation)

Say x = 0, y = 0 in center of pair
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Need A(kx, ky)

Don’t bother doing integral:

Know A for single slit centered at x = y = 0 is

A1 = bL sinc(kxb/2) sinc(kyL/2)

From translation property,

f(x − X) → e−ikxXF(kx)

so slit at x = a/2 has transform

A′
1 = bLe−ikxa/2 sinc(kxb/2) sinc(kyL/2)
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Slit at x = −a/2 has transform

A′
2 = bLeikxa/2 sinc

(

kxb

2

)

sinc

(

kyL

2

)

Since transform is linear, pair gives

A(kx, ky) = bL
(

eikxa/2 + e−ikxa/2
)

× sinc

(

kxb

2

)

sinc

(

kyL

2

)

= 2bL cos

(

kxa

2

)

sinc

(

kxb

2

)

sinc

(

kyL

2

)
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Then diffracted field is

E(x, y) =
1

λd
CA

(

kx

d
,
ky

d

)

= C
2bL

λd
cos

(

kxa

2d

)

sinc

(

kxb

2d

)

sinc

(

kyL

2d

)

for C = −ieikd eik(x2+y2)/2d, with |C| = 1

Question: Why does the cosine factor depend on x but not

y?
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Plot vs. x for a = 3b
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Like pattern for single slit ×2cos(kxa/2d)

Recall lecture 13:

Interference pattern from two point sources

E(x) = 2E1 cos(kxa/2d)

E1 = field from single source

⇒ Get product of two-point pattern

and single slit pattern
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Diffraction from an Array (Hecht 10.2.3)

What if there were N slits?

Or generalize:

suppose array of N identical apertures

a
x = 0

Each aperture described by A1(x, y)

Centers at x = na for n = 0 to N − 1
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Individual apertures have transform A1(kx, ky)

(hard to do for hexagon)

Given A1, what is total field?

Have A(x, y) =
N−1
∑

n=0

A1(x − na, y)

Using linearity and translation:

A(kx, ky) =
N−1
∑

n=0

e−inkxaA1(kx, ky)

= A1(kx, ky)
N−1
∑

n=0

e−inkxa
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Define

P(kx) =
N−1
∑

n=0

e−inkxa

independent of individual aperture shape

So Fraunhofer diffraction field is

Ad(x, y) ∝ A1

(

kx

d
,
ky

d

)

P
(

kx

d

)

envelope A1 modulated by P
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Calculate P: for α = e−ikxa,

P =
N−1
∑

n=0

αn

Geometric series:

P = 1 + α + α2 + · · · + αN−1

αP = α + α2 + · · · + αN

So P − αP = 1 − αN = (1 − α)P

P =
1 − αN

1 − α
=

1 − e−iNkxa

1 − e−ikxa

17

Rewrite

P(kx) =

(

e−iNkxa/2

e−ikxa/2

)(

eiNkxa/2 − e−iNkxa/2

eikxa/2 − e−ikxa/2

)

= e−ikx[(N−1)a/2]

[

sin(Nkxa/2)

sin(kxa/2)

]

= e−ikxxm
sin(Nkxa/2)

sin(kxa/2)

where xm =
(N − 1)

2
a = center of pattern

Question: What is P(0)?
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Plot sin2(Nβ)/ sin2(β):
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Peaks located at β = nπ

Get sharper as N increases

width ∆β = 2π/N

Remember, P multiplies single aperture pattern

Ten rectangular slits:
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Sharp lines useful for spectroscopy

Peaks at β =
kxa

2d
= mπ

or x =
2πmd

ka
=

mλd

a
: depends on λ

If d, a known, use to determine λ

Works about the same even for a, b ≈ λ
(Fresnel approx not valid)

Get peaks at angles sin θ =
mλ

a

m = order of maximum
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Demo: diffraction grating

Grating a = 1.7 µm

specify 1/a = 600 lines/mm

Light: Hg lamp

λ = 578 nm (yellow)

λ = 546 nm (green)

λ = 435 nm (blue)

Grating is highly dispersive

-better than prisms
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Circular Apertures (Hecht 10.2.5)

Say aperture is circular hole, radius a

A(x, y) =











E0

(

√

x2 + y2 < a

)

0 (else)

Need to know Fourier transform

A(kx, ky) =

∫∫

A(x, y)e−i(kxx+kyy) dx dy

Can’t separate into two 1D transforms

- need to work out integral
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Use polar coordinates

x = ρ cosφ

y = ρ sinφ

Expect A symmetric in (kx, ky)

So solve for ky = 0, then use

A(kx, ky) = A
(

√

k2
x + k2

y ,0

)

(k  , k  )  x y

A(kx,0) =
∫ a

0

∫ 2π

0
e−ikxρ cosφρ dφ dρ
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Integral not elementary

Have

∫ 2π

0
e−ikxρ cosφdφ = 2πJ0(kxρ)

J0 = Bessel function

Like sinc, but not exactly
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Bessel Function Primer

Family of functions:

Jm(u) =

1

2πim

∫ 2π

0
ei(mφ+u cosφ) dφ

Fairly common functions

(after trig, exp)

Summarize properties
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Solutions of Bessel’s equation:

u2J ′′
m + uJ ′

m + (u2 − m2)Jm = 0

Power series:

Jm(u) =

(

u

2

)m ∞
∑

n=0

(−1)n

n!(n + m)!

(

u

2

)2n

Large u expansion:

Jm(u) →
(

2

πu

)1/2
cos

[

u − (2m + 1)π

4

]

27

Orthogonality:
∫ ∞

0
uJm(αu)Jm(βu) du =

1

α
δ(α − β)

Derivative relation:

d

du
[umJm(u)] = umJm−1(u) {m > 0}

and

d

du
J0(u) = −J1(u)

Think of ≈ cosine (even m)

or sine (odd m)
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Apply to diffraction problem

A(kx,0) = 2π
∫ a

0
ρJ0(kxρ) dρ

Set u = kxρ

A(kx,0) =
2π

k2
x

∫ kxa

0
uJ0(u) du

From derivative relation

uJ0(u) =
d

du
[uJ1(u)]

so
∫

uJ0(u) du = uJ1(u)
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So transform is

A(kx,0) =
2π

k2
x

[uJ1(u)]
∣

∣

∣

kxa

0

or

A(kx, ky) =
2πa

kρ
J1(kρa)

for kρ ≡
√

k2
x + k2

y

Note, for small kρ, J1(kρa) → kρa/2

Write

A(kx, ky) = πa2

[

2J1(kρa)

kρa

]
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Where

[

2J1(kρa)

kρa

]

is like sinc function
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So Fraunhofer pattern is

|E(x, y)|2 = |E0|2
1

λ2d2

(

2πad

kρ

)2

J1

(

kρa

d

)2

= |E0|2
a2

ρ2
J1

(

kρa

d

)2

First zero at kρa/d = 3.83

ρ = 3.83
d

ak
= 0.61

λd

a
= 1.22

λd

D
aperture diameter D = 2a

Diffraction angle θ = ρ/d = 0.61λ/a

θ ≈ λ/a as always
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Called Airy pattern:

Question: The secondary maxima for a circular aperture

are smaller than for a square aperture. Why?
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Diffraction and Lenses

Fraunhofer only valid for very large d

Usually observed using lenses:

image d = ∞ onto focal plane

Example:

f

Plane wave incident on lens diameter D
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Without lens, get Airy pattern at ∞

Point x = θxd at ∞
maps to x = θxf in focal plane

f

θx

x  

So expect E(x, y) ∝ A(kx/f, ky/f)
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At focal plane of lens

|E(x, y)|2 = |E0|2
D2

4ρ2
J1

(

kρD

2f

)2

(using D = 2a)

Gives spot diameter 1.22
λf

D

= resolution limit of lens

Same result cited in discussion of aberrations
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More generally,

lens gives you Fraunhofer pattern for any object:

fs

At object plane, E = A(x, y)

Set by aperture or other condition

Assume diffraction angle � (lens diameter)/s

- so lens aperture unimportant
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At focal plane

E(x, y) =
C

λf
A
(

kx

f
,
ky

f

)

with phase factor

C = −ieik(s+f) exp

[

−i
(x2 + y2)(s − f)

2k

]

Result valid within Fresnel approximation

(Derivation Saleh and Teich 4.2B)

38



Note only phase depends on s

Object has same far-field pattern for any position

Focal plane of lens is special

Sometimes called “transform plane”

Convenient way to see Fraunhofer pattern

other applications next time
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Summary:

• Diffraction approx controlled by a2/λd

But no approximations for large θ

• Array gives single-object pattern,

modulated by grating function

• Grating: sharp peaks for large N

• Circular aperture → Bessel function

pattern radius = 1.22λd/D

• Lens: Fraunhofer pattern → focal plane

Mostly d → f everywhere
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