Phys 531 Lecture 18
25 October 2005
Fourier Optics
Last time, studied diffraction examples

- diffraction from an array
- diffraction from circular aperture

Also gave important result:

- get Fraunhofer pattern at focal plane of lens

Today, pursue this idea: Fourier optics

- also discuss holograms

Fanciest demos of whole course!

Outline:

- Lens as Fourier transformer
- Optical filtering
- Phase constrast imaging
- Holography

End of Fourier transform unit
Next time, start interference applications

## Optical Fourier Transform (Hecht 13.2)

Idea from end of previous class:
Suppose field $E(x, y, 0)=A(x, y)$ known
Introduce (thin) lens at $z=s_{o}$


Then at back focal plane of lens:

$$
E\left(x, y, s_{o}+f\right)=\frac{C}{\lambda f} \mathcal{A}\left(\frac{k x}{f}, \frac{k y}{f}\right)
$$

with

$$
C=-i e^{i k\left(s_{o}+f\right)} \exp \left[-i \frac{\left(x^{2}+y^{2}\right)\left(s_{o}-f\right)}{2 k}\right]
$$

Idea:
Lens maps $z=\infty$ to back focal plane At $z=\infty$, have Fraunhofer pattern (regardless of $s_{o}$ )

Allows observation of Fraunhofer pattern
More important:
Gives access to Fourier transform $\mathcal{A}$

Lens $=$ Fourier transformer

Transform is not just a mathematical tool!

Lens sometimes called "optical computer"
Useful if transform is what you really want

Example: Back scattering experiment


Shine laser on sample, light scattered in all directions

Angular distribution: information about surface How to measure?

Use Iens:


Focal plane: all light at angle $\theta$ focussed to $x$

$$
x=f \theta
$$

Observe focal plane with camera, gives $I(\theta)$

Note: idea easy in ray optics
Fourier: connect $\theta \leftrightarrow k_{x}$

So lens provides Fourier transform
Limitations:

- bandwidth limited by lens aperture $\max k_{x} \approx k D / s_{o}$
- aberrations give errors worse for larger $k_{x}$
- Hard to measure $E$ in focal plane $I$ only has $|E|$, not phase

Still very useful
Discuss some applications

## Optical Filtering (Hecht 13.2.3)

Don't just observe transform, manipulate it!
System:


Get image of object at $\frac{1}{s_{i}}=\frac{1}{f}-\frac{1}{s_{o}}$
$\rightarrow$ inverts transform automatically

Introduce filter in focal plane
Characterize by transmission $t(x, y)$ :

$$
E_{\mathrm{out}}(x, y)=t(x, y) E_{\mathrm{in}}(x, y)
$$



Example: filter $=$ circular hole, radius $a$
Then $t(x, y)= \begin{cases}1 & \left(x^{2}+y^{2}<a^{2}\right) \\ 0 & \text { (else) }\end{cases}$

What is effect?
Point ( $x, y$ ) corresponds to ( $k_{x}, k_{y}$ ) by

$$
\left(k_{x}, k_{y}\right)=\left(\frac{k x}{f}, \frac{k y}{f}\right)
$$

or

$$
(x, y)=\left(\frac{k_{x} f}{k}, \frac{k_{y} f}{k}\right)
$$

So aperture eliminates Fourier components with

$$
\sqrt{k_{x}^{2}+k_{y}^{2}}>\frac{k a}{f}
$$

Called low-pass filter

Generally, low-pass filter blurs image
Need high- $k$ components to get sharp transitions
Example (1D):


Light with $\lambda=500 \mathrm{~nm}$
Object $=$ slit, width $b=40 \mu \mathrm{~m}$
Image with lens $f=100 \mathrm{~mm}$
Filter with slit, width $a=3.6 \mathrm{~mm}$

Incident field and transform:


Filter cuts off $\left|k_{x}\right|>k a / 2 f=0.23 \mu \mathrm{~m}^{-1}$ approx at first zero of $\mathcal{A}$

So after filter, have


At image plane, get inverse transform of $\mathcal{A}^{\prime}$
$=$ image of $A$, missing high $k_{x}$ components


Sharp edges smoothed out

- avoid oscillations with better filter function

15

Works just like low pass filter in electronics

## Applications:

- Remove high frequency noise example: dust on image
- Remove pixelation example: digital image projector


Question: What happens to the total power of the image when it is filtered?

Alternatively, make filter $=$ small opaque spot
Disk radius $a$ blocks components with

$$
\sqrt{k_{x}^{2}+k_{y}^{2}}<\frac{k a}{f}
$$

Acts as high-pass filter
Not as directly useful as low-pass filter
(but related to phase contrast imaging...)

In slit example, say filter $=$ stripe
Use width $a=10 \mathrm{~mm}$

Cutoff $k_{x}=0.63 \mu \mathrm{~m}^{-1}$
Blocks five central maxima
Gives filtered fields:



Image bright at edges of object

In general, many types of filter possible
If known artifact or noise in image, design filter to remove

Hecht figure 13.34, 13.35 has nice examples

Question: Suppose one used a "edge" filter that blocked all $k_{x}<0$ and passed all $k_{x}>0$. What would be the effect on the image?

Demo:
Set up as in examples


Object $1=$ wire grid $=$ array of square holes
Object $2=$ circular hole
Filter $=$ circular aperture (low pass) or sphere mounted on glass slide (high pass)

Cameras view transform plane and image plane

## Phase Contrast Imaging (Hecht 13.2.4)

Filters can let you see things otherwise invisible
Suppose object is phase object
Example (1D):

$$
A(x)= \begin{cases}i E_{0} & (|x|<b / 2) \\ E_{0} & (|x|>b / 2)\end{cases}
$$

Then $I(x)=\frac{1}{2 \eta_{0}}\left|E_{0}\right|^{2}=$ constant $I_{0}$
Object not visible with conventional detector

Phase objects $=$ variations in index of refraction w/ little absorption or reflection

Simple example:
glass plate with 250 nm-deep slot (since 250 nm of glass $\rightarrow \pi / 2$ phase shift)

Real life examples:

- bacteria in water
- density variations in water or air
- stresses in glass or plastic

All hard to see normally

Phase objects have nontrivial transform
Easy way to calculate:
Write $A(x)=E_{0}+B(x)$
Then

$$
B(x)=A(x)-E_{0}= \begin{cases}E_{0}(i-1) & (|x|<b / 2) \\ 0 & (|x|>b / 2)\end{cases}
$$

Like normal slit function, amplitude $E_{0}(i-1)$
Transform

$$
\mathcal{B}\left(k_{x}\right)=E_{0}(i-1) b \operatorname{sinc}\left(\frac{k_{x} b}{2}\right)
$$

Also, transform of constant $E_{0}$ is $2 \pi E_{0} \delta\left(k_{x}\right)$

So $A(x)=E_{0}+B(x)$ has transform

$$
\mathcal{A}\left(k_{x}\right)=E_{0}\left[2 \pi \delta\left(k_{x}\right)+(i-1) b \operatorname{sinc}\left(\frac{k_{x} b}{2}\right)\right]
$$



In focal plane of lens, $\delta$-function $\rightarrow$ Airy pattern "spike", width $1.22 \lambda f / D$

Width of sinc function $=2 \lambda f / b$

If lens diameter $D \gg$ slit width $b$, central spike small compared to sinc pattern

Suppose high pass filter, size $a \approx \lambda f / D$
Blocks most of spike, negligible effect on sinc

Then $\mathcal{A}^{\prime}\left(k_{x}\right) \approx E_{0}(i-1) b \operatorname{sinc}\left(\frac{k_{x} b}{2}\right)$
$=$ transform of ordinary slit function

So image looks like ordinary slit:

$$
A^{\prime}(x)= \begin{cases}E_{0}(i-1) & (|x|<b / 2) \\ 0 & (|x|>b / 2)\end{cases}
$$

Irradiance:

$$
I^{\prime}(x)= \begin{cases}2 I_{0} & (|x|<b / 2) \\ 0 & (|x|>b / 2)\end{cases}
$$

Observe bright slit on dark background!

Filter converts phase variation of object to irradiance variation in image

Called phase contrast imaging
Understand idea from scattered waves:


Think of object as small, transparent lens

Several types of phase contrast imaging
High pass filter $=$ dark field method
(also called dark ground: background is dark)
Demo: same setup as before
Object $=$ scotch tape pattern

Similar idea: use edge filter
block $\delta$ function + half of scattered field
Called schlieren method
Easier to align, don't need small dot
Demo: movie!

Third method: bright field
Like dark field, but different filter
Instead of opaque spot, use phase plate
$=$ glass plate with small phase spot

$$
t(x, y)= \begin{cases}-i & \left(x^{2}+y^{2}<a^{2}\right) \\ 1 & \left(x^{2}+y^{2}>a^{2}\right)\end{cases}
$$

Suppose object field is

$$
A(x, y)=E_{0} e^{i \phi(x, y)}
$$

where $\phi$ is phase shift due to object

Typically $\phi \ll 1$, so

$$
A(x, y) \approx E_{0}[1+i \phi(x, y)]
$$

Like in dark field example, get transform

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=2 \pi E_{0} \delta\left(k_{x}\right) \delta\left(k_{y}\right)+i E_{0} \Phi\left(k_{x}, k_{y}\right)
$$

where $\Phi$ is transform of $\phi$

If phase plate radius $a \ll$ width of $\Phi$, then filtered transform is:

$$
\mathcal{A}^{\prime}\left(k_{x}, k_{y}\right) \approx-2 \pi i E_{0} \delta\left(k_{x}\right) \delta\left(k_{y}\right)+i E_{0} \Phi\left(k_{x}, k_{y}\right)
$$

Image gives inverse transform:

$$
A^{\prime}(x, y)=-i E_{0}+i E_{0} \phi(x, y)
$$

with irradiance

$$
\begin{aligned}
I^{\prime}(x, y) & =I_{0}[1-\phi(x, y)]^{2} \\
& \approx I_{0}[1-2 \phi(x, y)]
\end{aligned}
$$

Looks like regular absorptive object
Signal depends linearly on $\phi$

- Main advantage of bright field

Dark field, schlieren give signal $\propto \phi^{2}$
$\Rightarrow$ Bright field signal stronger for small $\phi$

Disadvantage: bright background

- Source of noise
- Not as pretty

Bright field common in biology

## Holograms

Another neat diffraction trick
Question: Why is it so easy to tell the difference between an object and a photograph of the object?

Some points:

- We percieve scattered light in either case
- Get same irradiance from each

To get 3D effect, recreate complete scattered field Real object:


In some plane $z=0$, have $E(x, y, 0)=A(x, y)$
Could recreate field with filter $t(x, y) \propto A(x, y)$


Since $E_{\text {out }}(x, y)=t E_{0} \propto A(x, y)$ propagates as original $E$

How to make filter?
Easiest way is with interference

illumination
"object wave"

photographic film

At film, get interference pattern

$$
E_{\mathrm{tot}}=E_{\mathrm{obj}}+E_{\mathrm{ref}}
$$

Record irradiance

$$
\left|E_{\mathrm{tot}}\right|^{2}=\left|E_{\mathrm{obj}}\right|^{2}+\left|E_{\mathrm{ref}}\right|^{2}+E_{\mathrm{obj}} E_{\mathrm{ref}}^{*}+E_{\mathrm{obj}}^{*} E_{\mathrm{ref}}
$$

Make $t \propto\left|E_{\text {tot }}\right|^{2}$
Film contains information about both waves

To observe, illuminate film with same $E_{\text {ref }}$
Then $A(x, y)=t(x, y) E_{\text {ref }}$

$$
\begin{aligned}
A(x, y) \propto & \left|E_{\mathrm{obj}}\right|^{2} E_{\mathrm{ref}}+\left|E_{\mathrm{ref}}\right|^{2} E_{\mathrm{ref}} \\
& +E_{\mathrm{obj}}^{*}\left(E_{\mathrm{ref}}\right)^{2}+E_{\mathrm{obj}}\left|E_{\mathrm{ref}}\right|^{2}
\end{aligned}
$$

Since $E_{\text {ref }}$ is plane wave, $\left|E_{\text {reff }}\right|^{2}$ is constant
So boxed term $\propto E_{\text {obj }},=$ desired field

Other terms:
waves propagating in other directions
virtual image


Percieve 3D representation of object

Of course, have demo!

Simple holograph method requires laser
Possible to avoid:
holograph on credit card uses ambient light
Laser method easiest to understand

- also works best


## Summary:

- Lens computes Fourier transform
- Put filter in transform plane
- low pass = aperture: smooths image
- high pass $=$ spot: accentuates edges
- Use filters for phase contrast imaging
- dark field $=$ opaque spot
- schlieren = straight edge
- bright field $=$ phase plate
- Holograph $=$ filter recreates object field
- make filter using interference

