Phys 531 Lecture 19 27 October 2005 Gaussian Beams

Last time, finished Fourier optics Lots of interesting applications

Next topic: interference and coherence emphasis on applications

Today, discuss laser beams

Typically use lasers for interference applications

1

Outline:

- Recall solution
- Properties
- Beams and optical systems

None of this in Hecht

See Saleh and Teich, chapter 3

Next time: interferometers

The Gaussian Beam

Actually derived already:

Lecture 15, slides 32–38

Start with Gaussian field at z = 0

$$E(x, y, 0) = E_0 e^{-(x^2 + y^2)/w_0^2}$$

Use Fresnel approximation to get field at all z:

$$E(x, y, z) = E_0 \frac{w_0^2}{Q^2} e^{ikz} e^{(x^2 + y^2)/Q^2}$$

for $Q^2 = w_0^2 + i \frac{2z}{k}$

\mathbf{r}
≺
_
_

Conform to conventional notation, change definition of Q:

Define
$$q = z - i \frac{k w_0^2}{2}$$
 $\left(= -i \frac{k}{2} \times Q^2 \right)$

Then

$$E(x,y,z) = -iE_0 \left(\frac{\pi w_0^2}{\lambda q}\right) e^{ikz} e^{ik(x^2+y^2)/2q}$$

Mathematically equivalent

Spend today exploring solution

Helpful to define

$$z_0 = \frac{kw_0^2}{2} = \frac{\pi w_0^2}{\lambda}$$

 \equiv Rayleigh length

Will see importance shortly

Convenient:
Have
$$q = z - iz_0$$
 and
 $E(x, y, z) = -iE_0 \frac{z_0}{q} e^{ikz} e^{ik(x^2 + y^2)/2q}$

5

Properties

• Irradiance

$$I = \frac{1}{2\eta_0} |E|^2$$

= $I_0 \frac{z_0^2}{|q|^2} \left[e^{ik\rho^2/2q} \times e^{-ik\rho^2/2q^*} \right]$

for $I_0 = |E_0|^2/(2\eta_0)$ and $\rho^2 = x^2 + y^2$

Total exponent is

$$\frac{ik\rho^2}{2(z-iz_0)} - \frac{ik\rho^2}{2(z+iz_0)} = -\frac{k\rho^2 z_0}{z^2 + z_0^2}$$

Write

$$I(\rho, z) = I_0 \frac{z_0^2}{z^2 + z_0^2} e^{-2\rho^2/w^2}$$

where
$$w = w(z) = \sqrt{\frac{2}{kz_0}(z^2 + z_0^2)}$$

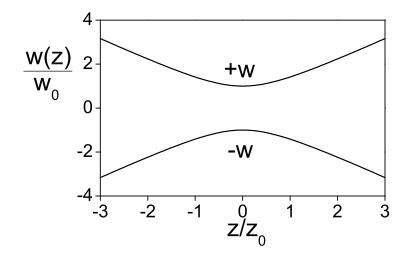
is the beam width at position \boldsymbol{z}

Using $z_0 = k w_0^2/2$, have

$$w(z) = w_0 \sqrt{1 + \frac{z^2}{z_0^2}}$$

	7	
1		

As beam propagates, width expands



Shows profile of beam as it travels

Minimum width = w_0 at z = 0Beam has focus at z = 0- called *beam waist* Call w_0 = waist radius For $|z| \ll z_0$, $w(z) \approx w_0$ At $z = \pm z_0$, width increased by $\sqrt{2}$ Rayleigh length \approx depth of focus Gives length over which beam stays focused

Question: If I double the beam waist, what happens to the Rayleigh length?

9

For $z \gg z_0$, beam diverges (Due to diffraction)

At large z

$$w(z) \approx \frac{w_0 z}{z_0} = \frac{\lambda}{\pi w_0} z$$

Divergence angle $\theta = \lambda/(\pi w_0)$

= minimum possible divergence for spot size w_0

Laser beams spread more slowly than other sources but they still spread

Example:

Suppose $\lambda = 633$ nm, $w_0 = 2$ mm

Then $z_0 = 20$ m and $\theta = 100 \ \mu$ rad

Laser beam near focus is collimated = not diverging Strange but true: only place laser is collimated is at focus Usually say "collimated" if z_0 large

```
"focused" if z_0 small
```

11

• Power

Total power in beam is

$$P = \iint I(x, y) \, dx \, dy$$
$$= 2\pi \int_0^\infty I(\rho, z) \rho \, d\rho$$

Note

$$I(\rho, z) = I_0 \frac{z_0^2}{z^2 + z_0^2} e^{-2\rho^2/w^2}$$
$$= I_0 \frac{w_0^2}{w^2} e^{-2\rho^2/w^2}$$

So $P = \frac{2\pi I_0 w_0^2}{w^2} \int_0^\infty \rho e^{-2\rho^2/w^2} d\rho$ Change variables $u = 2\rho^2/w^2$ $du = \frac{4\rho}{w^2} d\rho$ Then $P = \frac{\pi}{2} I_0 w_0^2 \int_0^\infty e^{-u} du = \frac{\pi}{2} I_0 w_0^2$

Here $I_0 = \max$ irradiance at center of focus Usually measure *P*, want I_0 :

$$I_0 = \frac{2P}{\pi w_0^2}$$

1	2
т	J

Generally

$$I_{\max}(z) = \frac{2P}{\pi w^2}$$

Effective area of beam = $\pi w^2/2$ - radius $w/\sqrt{2}$

Want larger radius if passing through aperture: 86% of power in ho < w 98% of power in ho < 2w

Rule of thumb: make aperture diameter = πw gives 95% transmission

• Phase

Have

$$E(x, y, z) = E_0\left(\frac{-iz_0}{q}\right) e^{ikz} e^{ik(x^2+y^2)/2q}$$

with $q = z - iz_0$

Write
$$\frac{1}{q} = \frac{1}{z - iz_0} = \frac{z + iz_0}{z^2 + z_0^2}$$

Imaginary part:

$$\frac{z_0}{z^2 + z_0^2} = \frac{w_0^2}{z_0 w^2} = \frac{\lambda}{\pi w^2} = \frac{2}{kw^2}$$

using definitions of \boldsymbol{w} and \boldsymbol{z}_0

1	
Т	5
_	-

Real part:

Define
$$\frac{z}{z^2 + z_0^2} = \frac{1}{R}$$

So
$$\frac{1}{q} = \frac{1}{R} + \frac{2i}{kw^2}$$

Use in exponent:

$$e^{ik\rho^2/2q} = e^{ik\rho^2/2R}e^{-\rho^2/w^2}$$

Recognize phase and amplitude terms

Also write prefactor in polar form

$$\frac{-iz_0}{z - iz_0} = \frac{1}{1 + i(z/z_0)} = \frac{1}{|1 + i(z/z_0)|} e^{-i\zeta}$$

with

$$\frac{1}{|1+i(z/z_0)|} = \frac{z_0}{\sqrt{z^2 + z_0^2}} = \frac{w_0}{w}$$

and

$$\tan\zeta = \frac{z}{z_0}$$

So express

$$E = E_0 \frac{w_0}{w} e^{i\phi} e^{-\rho^2/w^2}$$

with phase

$$\phi(z) = -\zeta(z) + k\left(z + \frac{\rho^2}{2R(z)}\right)$$

Rewrite

$$\phi(z) = -\zeta + k(z - R) + k\left(R + \frac{\rho^2}{2R}\right)$$

Recognize $R + \rho^2/(2R)$ as expansion of sphere wave

Radius of curvature R

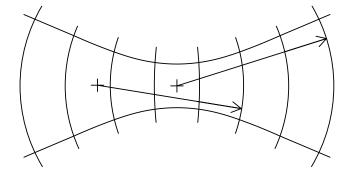
For $|z| \gg z_0$, $R \rightarrow z$

- sphere wave centered at focus

For $|z|\ll z_0$, $R
ightarrow\infty$

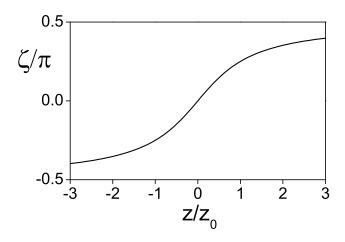
- plane wave
- = collimated, as before

Draw wave fronts:



On axis $\rho = 0$ have $\phi = kz - \zeta(z)$

Like plane wave with extra phase $\zeta = \tan^{-1}(z/z_0)$ called "Guoy" phase



180° phase shift through focus sometimes important

¹⁹

• Complex Radius

At position z, have $q = z - iz_0$

In general, Re z = distance to focus Im z = Rayleigh length of focus (× - 1) From z_0 get $w_0 = \sqrt{\lambda z_0/\pi}$

So q specifies beam parameters at focus

Question: Suppose that a Gaussian beam is propagating in the +z direction. At some position, you determine that q = 0.3 m - i0.05 m. Where is the focus of the beam relative to your position?

21

But

$$\frac{1}{q} = \frac{1}{R} + \frac{i\lambda}{\pi w^2}$$

R = radius of curvature at z

w = beam width at z

So 1/q specifies beam parameters at z

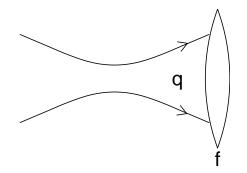
Inverting q:

```
Transforms between "local" properties at z
and "focal" properties at z = 0
```

```
q is useful: called complex beam radius
```

Beams and Lenses

What happens when we put Gaussian beam through lens?



Say incident beam has complex radius q

```
Thin lens, focal length f
```

23

Effect of lens:

Change radius of curvature R

Spherical wave centered at $z = -s_o$ \rightarrow sphere wave centered at $z = s_i$ with $\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$ Here $s_o = R_{\text{in}}$ $s_i = -R_{\text{out}}$ So $\frac{1}{R_{\text{out}}} = \frac{1}{R_{\text{in}}} - \frac{1}{f}$ Beam width doesn't change

So
$$\frac{1}{q_{\text{out}}} = \frac{1}{R_{\text{out}}} + i\frac{\lambda}{\pi w^2}$$

$$= \frac{1}{R_{\text{out}}} - \frac{1}{f} + i\frac{\lambda}{\pi w^2}$$
$$\frac{1}{\frac{1}{q_{\text{out}}}} = \frac{1}{\frac{q_{\text{in}}}{1}} - \frac{1}{f}$$

This is transformation law for Gaussian beam

25

Example: Suppose a Gaussian beam with $\lambda = 633$ nm has a focus with spot size $w_0 = 75 \ \mu$ m. A lens with f = 25mm is placed a distance 50 mm after the focus. At what position is the light refocused after the lens, and what beam waist is obtained?

Solution:

Incident beam has $q = z - iz_0$ for z = 50 mm and $z_0 = \pi w_0^2 / \lambda = 28$ mm. So $\frac{1}{q_{\text{in}}} = \frac{1}{50 - 28i} = 0.0152 + i0.0085 \text{ mm}^{-1}$ Then

$$\frac{1}{q_{\text{out}}} = \frac{1}{q_{\text{in}}} - \frac{1}{f} = -0.0248 + i0.0085 \text{ mm}^{-1}$$

Invert to get $q_{\text{OUT}} = -36 - i12.4$ mm.

So light is refocused 36 mm after lens.

Beam waist $w_0 = \sqrt{\lambda z_0/\pi} = 50 \ \mu m$.

Note ray optics predicts focus at

$$\frac{1}{s_i} = \frac{1}{f} - \frac{1}{s_o} = \frac{1}{25} - \frac{1}{50} = \frac{1}{50} \text{ mm}^{-1}$$

which is incorrect

2	7
~	•

Beams and Ray Matrices

General optical system described by ray matrix

$$\mathcal{M} = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

Transforms ray vector

$$\mathbf{v} = \left[\begin{array}{c} n\alpha \\ y \end{array} \right]$$

with $\mathbf{v}_{out} = \mathcal{M} \mathbf{v}_{in}$

Useful for thick lenses, multilens systems

Relate to Gaussian beams

Recall ${\mathcal M}$ composed of two elements:

• Refraction matrix

$$\mathcal{R} = \left[egin{array}{cc} 1 & -\mathcal{D} \ 0 & 1 \end{array}
ight]$$

where \mathcal{D} = refractive power of element

For thin lens $\mathcal{D}=1/f$

• Transfer matrix

$$\mathcal{T} = \left[\begin{array}{cc} 1 & 0\\ d/n & 1 \end{array} \right]$$

d = propagation distance, n = index

2	9

Get effect of elements on Gaussian beam

Refraction: for lens have

$$\frac{1}{q_{\text{out}}} = \frac{1}{q_{\text{in}}} - \frac{1}{f}$$
 Generally get

$$\frac{1}{q_{\text{out}}} = \frac{1}{q_{\text{in}}} - \mathcal{D} = \frac{1}{q_{\text{in}}} + B$$

where B = element of \mathcal{R} matrix

$$q_{\text{out}} = \frac{1}{1/q_{\text{in}} + B} = \frac{q_{\text{in}}}{1 + Bq_{\text{in}}}$$

Free propagation:

Have $q = z - iz_0$

Free propagation just changes z:

 $q_{\text{out}} = q_{\text{in}} + d$

Modified in medium: wavelength is different

Define $\lambda, k =$ values in vacuum $\lambda', k' =$ values in medium

So $\lambda' = \lambda/n$ and k' = nk

2	1
S	т

Then in medium have $z_0'=\pi w_0^2/\lambda'=nz_0$ and $q'=z-iz_0'$

Field evolves as

$$E(z) = -iE_0 \frac{z'_0}{q'} e^{ik'z} e^{ik'\rho^2/2q'}$$

= $-iE_0 \frac{nz_0}{z - inz_0} e^{ik'z} \exp\left[\frac{ink\rho^2}{2(z - inz_0)}\right]$
= $-iE_0 \frac{z_0}{z/n - iz_0} e^{ik'z} \exp\left[\frac{ik\rho^2}{2(z/n - iz_0)}\right]$
= $-iE_0 \frac{z_0}{q} e^{ik'z} e^{ik\rho^2/2q}$

for $q = z/n - iz_0$

Ignoring overall phase, distance d in medium has

$$q_{\text{out}} = q_{\text{in}} + \frac{d}{n}$$

In terms of ray matrix \mathcal{T} $q_{\text{out}} = q_{\text{in}} + C$

Get effect of both ${\mathcal R}$ and ${\mathcal T}$ with

 $q_{\rm out} = \frac{C + Dq_{\rm in}}{A + Bq_{\rm in}}$

ર	3
\mathbf{J}	J

Formula works for multiple systems too

Suppose
$$\mathcal{M}_1 = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}$$
 and $\mathcal{M}_2 = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}$

Then for arbitrary q_0 let

$$q_1 = \frac{C_1 + D_1 q_0}{A_1 + B_1 q_0}$$

(= output of element 1)
$$q_2 = \frac{C_2 + D_2 q_1}{A_2 + B_2 q_1}$$

(= output of element 2)

Substitute for q_1 , find

$$q_2 = \frac{C_T + D_T q_0}{A_T + B_T q_0}$$

for (A_T, B_T, C_T, D_T) satisfying

$$\begin{bmatrix} A_T & B_T \\ C_T & D_T \end{bmatrix} = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}$$

So q_0 related to q_2 by system matrix

$$\mathcal{M}_T = \mathcal{M}_2 \mathcal{M}_1$$

35

Works for any number of elements

For arbitrary system with $\mathcal{M} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$

have $q_{\text{out}} = \frac{C + Dq_{\text{in}}}{A + Bq_{\text{in}}}$

Easy to find Gaussian beam output of any paraxial system

Important: Various conventions for ${\cal M}$ and ${\bf v}$

Laser books usually have

$$q_{\rm out} = \frac{Aq_{\rm in} + B}{Cq_{\rm in} + D}$$

Elements of ${\mathcal M}$ rearranged

Also $\lambda =$ wavelength in medium not wavelength in vacuum

37

Summary

- Laser beams \approx Gaussian beam solution
- Collimated at focus, diverge at ∞
- Rayleigh length z₀ = depth of focus
 z₀ small if w₀ small
- Use ray matrices for propagation