Phys 531Lecture 230 August 2005Electromagnetic Theory (Hecht Ch. 3)

Last time, talked about waves in general

• wave equation: $\nabla^2 \psi(\mathbf{r},t) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$

 ψ = amplitude of disturbance of medium

For light, "medium" = EM field

1

This time:

- derive wave equation from Maxwell's Equations
- study properties of EM waves in vacuum

Next time:

• consider EM waves in matter

Maxwell's Equations:

Basic postulates of electromagnetism

Physical quantities:

Electric field	$\mathbf{E}(\mathbf{r},t)$	(Volts/m)
Magnetic field	$\mathbf{B}(\mathbf{r},t)$	(Tesla)
Charge density	$ ho({f r},t)$	(Coulombs/m ³)
Current density	$\mathbf{J}(\mathbf{r},t)$	(Amperes/m ²)

Gauss's Laws (charge produces a field):

$$\oint \mathbf{E} \cdot \mathbf{dS} = \frac{1}{\epsilon_0} \iiint \rho \, dV \qquad \oint \mathbf{B} \cdot \mathbf{dS} = 0$$

 ϵ_0 = permittivity of free space = 8.8 pF/m (from capacitor measurements)

3

Faraday's Law (changing B produces E):

$$\oint \mathbf{E} \cdot \mathbf{d}\ell = -\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{dS}$$

Ampere's Law (current, changing E produce B):

$$\oint \mathbf{B} \cdot \mathbf{d}\ell = \mu_0 \iint \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \cdot \mathbf{dS}$$

 μ_0 = permeability of free space = 1.3 μ H/m = 4 $\pi \times 10^{-7}$ H/m

These are integral form of Maxwell's equations

Will be more useful in *differential form* Use Gauss's Theorem: for any F(r)

$$\oiint \mathbf{F} \cdot \mathbf{dS} = \iiint \nabla \cdot \mathbf{F} \, dV$$

Here $\nabla \equiv \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$

Also Stoke's Theorem: $\oint \mathbf{F} \cdot d\ell = \iint (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$

• Analogous to ordinary calculus:

$$f(x_2) - f(x_1) = \int_{x_1}^{x_2} \frac{df}{dx} dx$$

function on boundary integral of derivative

5

Apply to Maxwell:

$$\oint \mathbf{E} \cdot \mathbf{dS} = \iiint \nabla \cdot \mathbf{E} \, dV$$
$$= \frac{1}{\epsilon_0} \iiint \rho \, dV$$

True for any volume V, so at each point \mathbf{r}

$$\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{\epsilon_0} \rho(\mathbf{r})$$

Similarly, get $\nabla \cdot \mathbf{B} = 0$

Also, for any surface S,

$$\oint \mathbf{E} \cdot \mathbf{d}\ell = \iint \nabla \times \mathbf{E} \cdot \mathbf{dS} = -\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{dS}$$

SO

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

and similarly

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$$

These are differential form of Maxwell's equations

7

Light Waves (Hecht 3.2) Light propagates in vacuum: $\rho = J = 0$ Maxwell equations become:

$$\nabla \cdot \mathbf{E} = 0 \tag{1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{3}$$

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \tag{4}$$

Where's the wave equation?

Derivation of wave equation

Take $\partial/\partial t$ of (4):

$$\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

or

$$\nabla \times \frac{\partial \mathbf{B}}{\partial t} = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Then using (3):

$$-\nabla \times (\nabla \times \mathbf{E}) = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Need to simplify $\nabla\times(\nabla\times E)$

Cross product rule:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

SO

$$abla imes (
abla imes \mathbf{E}) =
abla (
abla \cdot \mathbf{E}) - (
abla \cdot
abla) \mathbf{E}$$

But $\nabla\cdot \mathbf{E}=\mathbf{0},$ and $\nabla\cdot\nabla=\nabla^2,$ so

$$\nabla^2 \mathbf{E} = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

wave equation, $v = (\epsilon_0 \mu_0)^{-1/2}$

Similarly, take $\partial/\partial t$ of (3), end up with

$$\nabla^2 \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

So expect EM waves to exist. Do they correspond to light?

Compare speeds: $(\epsilon_0 \mu_0)^{-1/2} = 3 \times 10^8$ m/s Measured light speed $c = 3 \times 10^8$ m/s

Conclude light is EM wave

11

EM waves are vector waves

Previously considered scalar waves

Actually six coupled wave equations:

 $(E_x, E_y, E_z, B_x, B_y, B_z)$

Components must still obey Maxwell's equations example:

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

and

$$\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

Can simplify for plane wave solutions:

 $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ $\mathbf{B}(\mathbf{r},t) = \mathbf{B}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$

with \mathbf{E}_0 , \mathbf{B}_0 = complex vector amplitudes Sometimes confusing, so write out:

 $\mathbf{E}_0 = |E_{0x}|e^{i\phi_x}\hat{\mathbf{x}} + |E_{0y}|e^{i\phi_y}\hat{\mathbf{y}} + |E_{0z}|e^{i\phi_z}\hat{\mathbf{z}}$ and actual wave is

$$\mathbf{E} = |E_{0x}|\hat{\mathbf{x}}\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi_x) + |E_{0y}|\hat{\mathbf{y}}\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi_y) + |E_{0z}|\hat{\mathbf{z}}\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi_z)$$

1	3
-	<u> </u>

Plane Waves
Have
$$\frac{\partial \mathbf{E}}{\partial x} = \frac{\partial}{\partial x} \mathbf{E}_0 e^{i(k_x x + k_y y + k_z z - \omega t)}$$

 $= ik_x \mathbf{E}_0 e^{i(k_x x + k_y y + k_z z - \omega t)}$
 $= ik_x \mathbf{E}(\mathbf{r}, t)$
Also $\frac{\partial \mathbf{E}}{\partial y} = ik_y \mathbf{E}$, $\frac{\partial \mathbf{E}}{\partial z} = ik_z \mathbf{E}$
and $\frac{\partial \mathbf{B}}{\partial x} = ik_x \mathbf{B}$, $\frac{\partial \mathbf{B}}{\partial y} = ik_y \mathbf{B}$, $\frac{\partial \mathbf{B}}{\partial z} = ik_z \mathbf{B}$

Thus, for plane waves, can replace

$$\nabla = \hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z} \to i(\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y + \hat{\mathbf{z}}k_z) = i\mathbf{k}$$

Also,
$$\frac{\partial}{\partial t} \rightarrow -i\omega$$

So wave equation becomes

$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \to -k^2 \mathbf{E} = -\frac{\omega^2}{c^2} \mathbf{E}$$

Solution if $k = \omega/c$, as before.

Maxwell equations become

 $\begin{aligned} \mathbf{k} \cdot \mathbf{E} &= 0 & \mathbf{k} \cdot \mathbf{B} &= 0 \\ \mathbf{k} \times \mathbf{E} &= \omega \mathbf{B} & \mathbf{k} \times \mathbf{B} &= -\frac{\omega}{c^2} \mathbf{E} \end{aligned}$

1	Б
т	5

Exponentials factors $e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ drop out, so

with $\hat{\mathbf{k}}$ = propagation direction

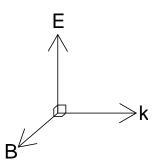
Dot products indicate $\mathbf{E}_0,~\mathbf{B}_0\perp\mathbf{k}$

• Say EM waves are transverse

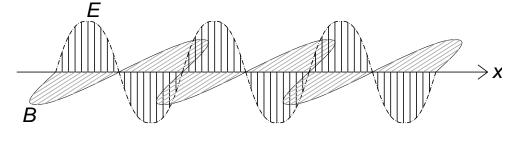
Cross products indicate $B_0 = \frac{1}{c}\hat{k} \times E_0$

- \bullet So $B\perp E$ as well
- $|\mathbf{B}_0| = |\mathbf{E}_0|/c$

So (E,B,k) form orthogonal basis



Picture: (snapshot at fixed $\mathit{t};\; \hat{k}=\hat{x})$



```
17
```

Question: If a wave has E along $\hat{\mathbf{x}}$ and B along $\hat{\mathbf{z}}$, what is the direction of propagation?

Question: How would my 'snapshot' picture evolve in time?

Frequencies (Hecht 3.6)

EM waves observed over large range of ω :

ν (Hz)	λ	Name
< 10 ⁵	> 3000 m	ELF wave
$10^5 - 10^9$	3000 m – 30 cm	radio wave
$10^9 - 10^{11}$	30 cm – 3 mm	microwave
$10^{11} - 10^{13}$	3 mm – 30 μ m	terahertz
$10^{13} - 4 imes 10^{14}$	30 μ m – 750 nm	infrared
$4 extsf{}8 imes10^{14}$	750–375 nm	visible light
$8 imes 10^{14} - 10^{16}$	375–30 nm	ultraviolet
$10^{16} - 10^{19}$	30 nm – 30 pm	x-rays
$> 10^{19}$	< 30 pm	gamma rays

19

Optics particularly deals with "light:" infrared to ultraviolet

Lower ν : approximations not valid ray optics fails wave approximations fail

Higher ν : quantum effects important wave effects hard to see ray optics OK, but no optical materials

Properties of plane waves

Sometimes write $\mathbf{E}_0 = E_0 \hat{j}$ with $|\hat{j}| = 1$

- $E_0 = \text{complex amplitude (V/m)}$
- $\hat{\jmath} = polarization vector = Jones vector$
- More on polarization later
- Amplitude related to energy in wave: discuss now

General EM energy density (J/m^3) :

$$u(\mathbf{r}) = \frac{\epsilon_0}{2} |\mathbf{E}|^2 + \frac{1}{2\mu_0} |\mathbf{B}|^2$$

Energy in volume $V = \iiint_V u(\mathbf{r}) \, dV$

For plane wave $|\mathbf{B}| = |\mathbf{E}|/c$. So

$$u = \frac{\epsilon_0}{2} |\mathbf{E}|^2 + \frac{1}{2\mu_0 c^2} |\mathbf{E}|^2$$
$$= \frac{\epsilon_0}{2} |\mathbf{E}|^2 + \frac{\epsilon_0}{2} |\mathbf{E}|^2 = \epsilon_0 |\mathbf{E}|^2$$

But here ${\bf E}$ refers to real electric field

If
$$\mathbf{E} = \operatorname{Re} \left[E_0 \hat{j} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \right]$$
, then really

$$\mathbf{E} = |E_{0x}| \hat{\mathbf{x}} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_x) + |E_{0y}| \hat{\mathbf{y}} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_y) + |E_{0z}| \hat{\mathbf{z}} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_z)$$

and

$$u = \epsilon_0 |E_{0x}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_x) + \epsilon_0 |E_{0y}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_y) + \epsilon_0 |E_{0z}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_z)$$

Energy oscillates in time.

23

For light, oscillation is rapid: usually average over many periods Average of cos²() over many periods = $\frac{1}{2}$ So time-average $\langle u \rangle = \frac{\epsilon_0}{2} (|E_{0x}|^2 + |E_{0y}|^2 + |E_{0z}|^2)$ In terms of complex fields, $\langle u \rangle = \frac{\epsilon_0}{2} |\mathbf{E}|^2$

where
$$|\mathbf{E}|^2 = \mathbf{E} \cdot \mathbf{E}^* = |E_{0x}|^2 + |E_{0y}|^2 + |E_{0z}|^2$$

Question: What is the *total* energy in a plane wave with amplitude E_0 ?

Also interested in energy flow:

Use Poynting vector $\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$

Can show that

$$W = \iint_{\Sigma} \mathbf{S} \cdot \mathbf{d}\Sigma$$

is energy per unit time crossing surface $\boldsymbol{\Sigma}$

Units of ${\bf S}$ are W/m^2

\sim	E .
/	n
_	0

Plane waves: $\mathbf{B} = \frac{1}{c}\hat{\mathbf{k}} \times \mathbf{E}$, so

$$\mathbf{S} = \frac{1}{\mu_0 c} \hat{\mathbf{k}} \left(|E_{0x}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_x) + |E_{0y}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_y) + |E_{0z}|^2 \cos^2(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi_z) \right)$$

Direction of propagation \widehat{k}

= direction of energy flow $\widehat{\mathbf{S}}$

Question: What do you think $\mathbf{S}(\mathbf{r})$ looks like for a spherical wave?

$$I = \langle |\mathbf{S}| \rangle = \frac{1}{2\mu_0 c} |\mathbf{E}_0|^2 = \left[\frac{1}{2\eta_0} |\mathbf{E}_0|^2 \right]$$

where $\eta_0 \equiv (\mu_0/\epsilon_0)^{1/2} = 377 \ \Omega$ "impedance of free space"

Units check: $(W/m^2) = (V/m)^2/\Omega$ (Recall $P = V^2/R$ from electronics)

I is most common measure of optical field strength

27

In terms of complex fields: $S = \frac{1}{2\mu_0} E \times B^*$ (implicit time average!)

Poynting vector gives other properties too:

- Energy density $\langle u \rangle = \frac{|\mathbf{S}|}{c}$
- Linear momentum $\langle \mathbf{p} \rangle = \frac{1}{c^2} \iiint \mathbf{S} \, dV$
- Angular momentum $\langle \mathbf{L} \rangle = \frac{1}{c^2} \iiint \mathbf{r} \times \mathbf{S} \, dV$

Summary:

- Light is EM wave
- Coupled E, B fields
- Plane waves, complex vector amplitudes
- Irradiance $I = \frac{1}{2\eta_0} |\mathbf{E}_0|^2 \ (W/m^2)$

29