
Phys 531 Lecture 21 3 November 2005

Coherence Theory: Temporal

Last time, discussed interferometers

Michelson

Fabry-Perot

Mostly considered monochromatic light

makes interference easy

Can also use incoherent light

sometimes necessary

Today, discuss incoherent sources

be more quantitative than before
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Outline:

• Random waves

• Temporal coherence function

• Applications to interference

• Power spectral density

More Fourier transforms today!

Developing toward Hecht Chapter 12

Material from Ch 7, 9, 11

In Ch 12, Hecht focuses on spatial coherence:

We’ll cover in next lecture

Today, apply same ideas to temporal coherence

Easier way to start
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Random Waves (Hecht 7.4.3)

Most light sources produce wave that fluctuates

Then E(t) varies ∼ randomly in time

Example:
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Why?

Source composed of many atoms

= many radiators

Quantum mechanics:

Each atom excited in discrete steps

Radiates briefly, then stops (until excited again)

So atom produces

pulses of light:

Sum over many atoms,

get random field

4



Typical atomic decay time = 10 ns

Makes field that is coherent over 10 ns timescale

Recall coherent = oscillating with constant phase

Define coherence time τc

= time over which wave is coherent

Question: What would be the coherence time of a pulsed

laser?
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Note 10 ns ≈ 107 optical periods

Atomic radiation is rather coherent

Most thermal sources not that good:

Examples: light bulb, candle, sunlight

Atoms constantly collide with neighbors

- interrupt phase of oscillation

Typical coherence time = 2-3 fs

1–2 optical periods

Want to understand effect on interference
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Random Waves (Hecht 12.3)

How to treat mathematically?

Don’t work with E(t) directly

Assume we have sample of “possible” E(t)’s

Work with averages

〈..〉 = average over sample

Imagine running experiment many times,

collecting data E1(t), E2(t), E3(t) . . .
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For instance:

〈E(t)〉 = average possible values of E at time t

= 0 for truly random wave

But might have E(t) = Ē(t) + δE(t)

Ē(t) = non-random = deterministic

δE(t) = random noise

Then 〈E(t)〉 = Ē(t) = deterministic part

Already know how deterministic part works

For today, assume 〈E(t)〉 = 0
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Also assume that averages are independent of time

⇒ Fluctuations in E have constant character

Say that E(t) is stationary

For stationary wave,

can record samples E(t) sequentially in time

Sample length T , get N samples in time NT

Then 〈..〉 equivalent to time average

〈f〉 = lim
T→∞

1

T

∫ T/2

−T/2
f(t) dt
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What can we measure?

Know irradiance 6= 0:

I =
1

2η0

〈

|E|2
〉

For stationary wave, I is constant

Same whether light is coherent or not

Really want to know how E(t) compares to E(t+τ)

Tells how correlations decay in time
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Define temporal coherence function

Γ(τ) = 〈E(t + τ)E∗(t)〉

Have Γ(0) ≡ 2η0I

- has irradiance information

Also has coherence information:

If τ � τc, then E(t + τ) independent of E(t)

⇒ Γ(τ) = 0

If τ � τc, then E(t + τ) determined by E(t)

⇒ Γ(τ) large
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Γ(τ) gives precise measure of coherence

Examples:

• Monochromatic wave E(t) = E0e−iω0t

Γ(τ) =
〈

E0e−iω0(t+τ)E∗
0eiω0t

〉

= |E0|2e−iω0τ

Oscillates at ω0

Magnitude = |E0|2 for all τ

- perfectly coherent wave
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• Atomic radiation, frequency ω0:

Γ(τ) = |E0|2e−|τ |/τc e−iω0τ

exponential decay, time constant τc

Question: Is it possible to have |Γ(τ)| > Γ(0)?

Generally, can’t calculate Γ(τ) in optics

Need to know about physics of source

→ Usually quantum mechanics

Can measure for given source
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Often use normalized version of Γ

γ(τ) =
Γ(τ)

Γ(0)

so γ independent of irradiance

Called complex degree of temporal coherence

(pretty dumb name)

For atomic radiation

γ(τ) = e−|τ |/τc e−iω0τ
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Interference (Hecht 9.2, 9.3)

Use Γ(τ) to analyze interference

Basic example:

Michelson interferometer h/2

Arm length difference = h
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Suppose source = random wave E0(t)

Let length of arm 1 = d

Then output E1(t) = βE0(t − d/c)

- transmission factor β

- time delay d/c

Length of arm 2 = d + h

And output E2(t) = βE0(t − d/c − h/c)
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Output irradiance given by

|E(t)|2 = |E1(t) + E2(t)|2

= |E1(t)|2 + |E2(t)|2

+ E∗
1(t)E2(t) + E1(t)E

∗
2(t)

But only want to look at averages:
〈

|E|2
〉

=
〈

|E1|2
〉

+
〈

|E2|2
〉

+ 〈E∗
1E2〉 + 〈E1E∗

2〉

Have
〈

|E1|2
〉

=
〈

|E2|2
〉

= |β|2
〈

|E0|2
〉

= |β|2Γ(0)
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For interference terms, have

〈E1(t)E
∗
2(t)〉 = |β|2 〈E0(t − d/c)E∗

0(t − d/c − h/c)〉

With stationary wave can rearrange times:

〈E0(t − d/c)E∗
0(t − d/c − h/c)〉 = 〈E0(t + h/c)E∗

0(t)〉
= Γ(τ)

for τ = h/c = time delay

Also 〈E∗
1(t)E2(t)〉 = |β|2Γ∗(τ)
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So total output is
〈

|E|2
〉

= |β|2 [

2Γ(0) + Γ(h/c) + Γ∗ (h/c)
]

Suppose Γ(τ) = Γ(0)e−|τ |/τc e−iω0t

Define `c = cτc = longitudinal coherence length

Then
〈

|E|2
〉

= |β|2Γ(0)
[

2 + e−|h/`c| e−iω0h/c + e−|h/`c| eiω0h/c
]

= 2|β|2Γ(0)

[

1 + e−|h/`c| cos
(

ω0h

c

)]

See oscillation with h: interference

- but amplitude decays for |h| & `c
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Define visibility of interference pattern

V =
Imax − Imin

Imax + Imin

For perfect fringe, Imin = 0 ⇒ V = 1

Generally good measure of fringe contrast

In our example,

Imax =
|β|2Γ(0)

η0

(

1 + e−|ch/τc|
)

Imin =
|β|2Γ(0)

η0

(

1 − e−|ch/τc|
)
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So V =
2e−|h/`c|

2
= e−|h/`c|

General result:

V = |γ(τ)|

when interfering waves with time delay τ

If amplitudes of E1 and E2 are different, get

V =
2
√

I1I2
I1 + I2

|γ(τ)|

Question: Is V higher or lower if I1 6= I2?
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Michelson interferometer

= good way to measure γ

Demo: Michelson with white light

Another example: Two slit interference

a θ
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Interference at angle θ:

path length difference = aθ

Time delay = aθ/c

So fringe visibility decays as |γ(aθ/c)|

If coherence time τc, need |aθ/c| < τc

limits |θ| < `c/a
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For light bulb, τc = 2 fs

⇒ `c = 0.6 µm

If a = 100 µm, need |θ| < 6 mrad = 0.3◦

But fringe spacing ∆θ = λ/a = 5 mrad

Only observe about one fringe

Generally limited to N ≈ `c

λ
fringes

Hard to see interference with natural light
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Power Spectral Density (Hecht 11.3.4)

Γ also useful for characterizing spectrum of light

Idea of spectrum:

Polychromatic light has range of frequencies

Want to characterize by I(ω)

- irradiance as function of frequency

For instance: Pass light through filter for freq ω0,

frequency width ∆ω

Expect to transmit irradiance I(ω0)∆ω

25

Obvious approach: Fourier transform

Try to define

I(ω) =
1

2η0
|E(ω)|2

for E = transform of E(t)

Doesn’t work – several reasons

• Units wrong:

E(ω) units Vs/m

So I(ω) units (W s2)/m2

Want units (W s)/m2 so that I(ω)∆ω = W/m2
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• Bad for monochromatic light:

If E(t) = E0e−iω0t then

E(ω) = 2πE0δ(ω − ω0)

I(ω) =
2π2|E0|2

η0
δ(ω − ω0)

2

δ()2 is nasty

• Bad for random light:

E(ω) =

∫ ∞

−∞
E(t)eiωt dt

Need to average 〈..〉, don’t know how
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Attack averaging problem

(solves others as well)

Define ET (ω) =
∫ T/2

−T/2
E(t)eiωt dt

Then |ET |2∆ω/2η0 = energy/m2 in time T

(Parseval’s theorem)

Want power = average energy/time

Define S(ω) = lim
T→∞

|ET (ω)|2
2η0T

Call S(ω) = power spectral density

28



Write out limit

lim
T→∞

1

T

∫ T/2

−T/2
E∗(t)e−iωt dt

∫ T/2

−T/2
E(t′)eiωt′ dt′

Change variables to (t, τ) with t′ = t + τ

lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2−t

−T/2−t
E(t+τ)E∗(t)e−iωteiω(t+τ) dτ dt

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2−t

−T/2−t
E(t + τ)E∗(t)eiωτ dτ dt
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Move τ integral outside limit

=

∫ ∞

−∞
eiωτ

[

lim
T→∞

1

T

∫ T/2

−T/2
E(t + τ)E∗(t) dt

]

dτ

Recognize expression in brackets:

lim
T→∞

1

T

∫ T/2

−T/2
E(t + τ)E∗(t) dt = 〈E(t + τ)E∗(t)〉

= Γ(τ)
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So S(ω) =
1

2η0

∫ ∞

−∞
Γ(τ)eiωτ dτ

Power spectral density =

Fourier transform of temporal coherence function

Called the Wiener-Khintchine theorem

Extremely useful, not just in optics

For instance:

Calculate spectrum of electronic noise

Or spectrum of stock market fluctuations

Good way to characterize any noisy signal
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Examples:

• Monochromatic field E(t) = E0e−iω0t

Saw already Γ(τ) = |E0|2e−iω0τ

So S(ω) =
|E0|2
2η0

∫ ∞

−∞
ei(ω−ω0)tdt

=
π|E0|2

η0
δ(ω − ω0)

δ-peak at ω = ω0: makes sense, monochromatic
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Total irradiance is

I =
1

2π

∫ ∞

−∞
S(ω)dω

Here

I =
|E0|2
2η0

∫ ∞

−∞
δ(ω − ω0)dω

=
|E0|2
2η0

using
∫

δ(ω)dω = 1

Get expected result
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• Atomic radiation

Have Γ(τ) = Γ(0)e−|τ |/τc e−iω0τ

S(ω) =
Γ(0)

2η0

∫ ∞

−∞
e−|τ |/τc ei(ω−ω0)τ dτ

Did this already, HW problem 6.4

Get S(ω) =
Γ(0)

η0

τc

1 + τ2
c (ω − ω0)

2

Called Lorentzian function

Peak at ω0

FWHM ∆ω = 2/τc
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Plot L(u) =
2

1 + u2

Normalized:
1

2π

∫ ∞

−∞
L(u) du = 1
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General property of Fourier transforms:

∆ω∆t & π

Here ∆ω is spectral bandwidth

= range of frequencies present

So ∆ω is related to coherence time τc:

τc ≈ π

∆ω

Incoherent source has broad bandwidth

Monochromatic source is very coherent
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Gives another way to look at loss of visibility

Consider two slit interference

Incoherent source: bandwidth ∆ω

Imagine we have red and blue light

Red light makes red interference pattern

w/ high visibility

Blue light makes blue pattern

w/ high visibility
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Observe sum of red and blue:

Pattern washed out at high angles

peaks of blue cancel troughs of red

Find that interference goes away at θ ≈ `c/a

as before
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Summary

• Characterize random waves with averages

• Describe coherence with Γ(τ)

Γ = 〈E(t + τ)E∗(t)〉

• Γ sets visibility of interference

visibility → 0 for large path difference

• Describe spectrum with S(ω)

= Fourier transform of Γ(τ)
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