Last time, discussed basics of polarization
Linear, circular, elliptical states
Describe by polarization vector $\hat{\jmath}$

Today:
How to establish and manipulate polarization

Outline:

- Polarizers
- Reflection, scattering, dichroism
- Calculations with polarizers
- Birefringence

Next time: Retarders

- make circular and elliptical polarizations

Jones calculus

- matrix method for calculations

Polarizers (Hecht 8.2)

Most natural light sources are unpolarized
Obtain polarized light with polarizer
$=$ "filter" passing only one polarization state
Usually transmit linear polarization
Plane of polarization given by transmission axis

Ideal polarizer:
Transmission for $\hat{\jmath} \|$ axis $=1$
Transmission for $\widehat{\jmath} \perp$ axis $=0$
In general, say axis $=\mathbf{a}$ and $\mathbf{b} \perp \mathbf{a}$

Then in 1-2 basis, $\hat{\jmath}=j_{\|} \mathbf{a}+j_{\perp} \mathbf{b}$ transmit amplitude $j_{\|}$
To get: $\hat{\jmath} \cdot \mathbf{a}^{*}=j_{\perp}$
since $\mathbf{a} \cdot \mathbf{a}^{*}=1$ and $\mathbf{b} \cdot \mathbf{a}^{*}=0$
Usually a is real, write

$$
T=\left|j_{\|}\right|^{2}=\left|\jmath^{*} \cdot \mathbf{a}\right|^{2}
$$

If a real, have linear polarizer
Axis at angle θ, write $\mathbf{a}=\cos \theta \widehat{\mathbf{x}}+\sin \theta \hat{\mathbf{y}}$
If $\widehat{\jmath}$ linearly polarized $\hat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha \widehat{\mathbf{y}}$
Then $\widehat{\jmath}^{*} \cdot \mathbf{a}=\widehat{\jmath} \cdot \mathbf{a}=\cos \theta \cos \alpha+\sin \theta \sin \alpha$

$$
=\cos (\theta-\alpha)
$$

Gives Malus's Law:
For linear polarization incident on polarizer, $I_{\text {out }}=I_{\text {in }} \cos ^{2}(\theta-\alpha)$
$\theta-\alpha=$ angle between transmission axis and incident plane of polarization

But $T=\left|\hat{\jmath}^{*} \cdot \mathbf{a}\right|^{2}$ is more general
Example:
If $\widehat{\jmath}_{\text {inc }}=\widehat{\mathrm{e}}_{\mathcal{R}}=\frac{\widehat{\mathbf{x}}-i \widehat{\mathbf{y}}}{\sqrt{2}}$, what is transmission through linear polarizer at angle θ ?

Have $\widehat{\jmath}^{*} \cdot \mathbf{a}=\frac{\cos \theta+i \sin \theta}{\sqrt{2}}=\frac{1}{\sqrt{2}} e^{i \theta}$
So $T=\frac{1}{2}\left|e^{i \theta}\right|^{2}=\frac{1}{2}$ independent of θ
Question: What would it mean if a were complex?

Other effect:
Light exitting ideal polarizer has $\hat{\jmath}_{\text {out }}=\mathbf{a}$
To see, write $\widehat{\jmath}_{\text {in }}=j_{\|} \mathbf{a}+j_{\perp} \mathbf{b}$
a is transmitted
b is blocked
So $\hat{\jmath}_{\text {out }}=j_{\|} \mathbf{a} \rightarrow \mathbf{a}$
(amplitude $j_{\|}$gives transmission)

Physically, \perp component is absorbed or reflected, only || component remains

If two polarizers: first at θ_{1}, second at θ_{2}

Output of first $=$ polarized along θ_{1}
Transmission of second $=\cos ^{2}\left(\theta_{2}-\theta_{1}\right)$

Original version of Malus's Law

Or say three polarizers: first at 0°, second at 45°, third at 90°

Without middle polarizer, transmission is zero
With all three, transmission is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Question: This seems counterintuitive. Where does the vertical component come from?

Real polarizers aren't perfect:

- Transmission for $\widehat{\jmath} \| \mathbf{a}=T_{0}<1$ (loss)
- Transmission for $\widehat{\jmath} \perp \mathbf{a}=\epsilon>0$ (leakage)
- Output light not exactly polarized along a (rarely specified)

Values depend on type of polarizer

Discuss types of polarizers

Constructing Polarizers (Hecht 8.3-8.6)

Already know one way to polarize light: use Brewster's angle

When TM polarized light incident at angle $\theta_{p}=\tan ^{-1}\left(n_{t} / n_{i}\right)$

Get $r_{\|}=0$

Two ways to make polarizer:

- Use reflected light: get \perp component

Then loss is very high:

- glass, get $R_{\perp} \approx 0.2 \rightarrow$ lose 80%

Also, leakage is fairly high:

- hard to control angle accurately
- Better: use transmitted light and many surfaces

Pile of plates polarizer:

Each surface transmits almost all of $I_{\|}$ and fraction T_{\perp} of I_{\perp} for glass, $T_{\perp} \approx 0.8$

For N plates, total \perp transmission $=T_{\perp \text { tot }}=T_{\perp}^{2 N}$
Say glass plates, $N=10: T_{\perp \text { tot }}=0.01$
Typically get total $T_{| | \text {tot }}=0.5$

Pile of plates simple and robust Good extinction for large N

But often awkward to use:
thick, requires collimated light
Rarely used now in optics
Similar methods used for x-rays, other radiation

Polarization by Scattering

Brewster effect based on scattering properties:
Recall Brewster angle when $\mathbf{k}_{\text {ref }} \| \mathbf{E}_{\text {trans }}$

Atoms in glass can't radiate || E
(Charges radiate \perp acceleration)

Scattered light is generally polarized
Example: light from sky

옷
Not typically useful as polarizer

Dichroism (Hecht 8.3)
Dichroism $=$ selective absorption of one (linear) polarization

Clearly useful for polarizers

Example: microwave polarizer
Array of parallel wires
spacing $\ll \lambda$

17

E aligned with wires: drive current resistance \rightarrow power dissipation
\rightarrow absorption
E \perp wires: little current, no absorption
Acts as a polarizer: transmits only $\mathbf{E} \perp$ wires

Watch out: graphically, want to picture vertical E
"squeezing" through slots
Actual effect is just the opposite!

Optical version: wires \rightarrow long polymer chains Embed in clear plastic Stretch plastic to align chains

Material called polaroid

Most common polarizer
Great for demos!

Characteristics of polaroid:

- Somewhat lossy: $T_{0} \approx 0.7$
- Low leakage $\epsilon \approx 10^{-3}$
- Work best for visible light
- Cheap: \$1 for 5 cm square

Important restriction: limited to low power (plastic can melt)

Don't use with high intensity beams $\max I \approx 1 \mathrm{~W} / \mathrm{cm}^{2}$

Birefringence (Hecht 8.4)
Best polarizers based on birefingence

- Property of certain crystals

Generally, different directions not equivalent
Possible crystal lattice:

$$
\vdots \vdots \begin{gathered}
\vdots \\
\vdots \\
\vdots
\end{gathered}{ }^{\mathrm{y}} \quad \quad \text { (dots }=\text { atoms) }
$$

x and y axes different
Note x and y determined by crystal

In asymmetric crystal, index of refraction n depends on direction of \mathbf{E}

If \mathbf{E} along x then have $n=n_{x}$:

If \mathbf{E} along y then $n=n_{y}$:

All crystals have three basic symmetry axes for now, label x, y and z

Call $n_{x}, n_{y}, n_{z}=$ principle indices of refraction
Three different kinds of crystals:

- isotropic: $n_{x}=n_{y}=n_{z}$
- not birefringent
- uniaxial: $n_{x}=n_{y} \neq n_{z}$
- z axis special: called optic axis
- biaxial: $n_{x} \neq n_{y} \neq n_{z}$
- optical properties complicated

Question: Can a liquid be birefringent?

Focus on uniaxial:
Symmetry like a cylinder: x and y interchangable
Terminology: call $n_{x}, n_{y}=n_{o}$ ordinary index

Call $n_{z}=n_{e}$: extraordinary index

Common optical materials:
Calcite: $n_{o}=1.658, n_{e}=1.486$
Quartz: $n_{o}=1.544, n_{e}=1.553$
Other examples: ice, mica, sapphire, LiNbO_{3}

What happens if \mathbf{k} is not along a crystal axis?
Example:

Light propagates along z
E along x
optic axis at angle γ in $x z$-plane

Question: What is index if \mathbf{E} along y ?

For \mathbf{E} along x, get effective index $n_{\text {eff }}$:

$$
\frac{1}{n_{\text {eff }}^{2}}=\frac{\cos ^{2} \gamma}{n_{o}^{2}}+\frac{\sin ^{2} \gamma}{n_{e}^{2}}
$$

If $\gamma=0^{\circ}, n_{\text {eff }}=n_{o}$ if $\gamma=90^{\circ}, n_{\text {eff }}=n_{e}$

Otherwise $n_{\text {eff }}$ between n_{o} and n_{e}

Derivation a bit hard, won't go through See Klein and Furtak $\S 9.4$

Probably cover in Phys 532

Upshot:
In birefringent materials, n depends on polarization
Simple polarizer:
Calcite prism, axis \perp to page

\perp and $|\mid$ polarizations have different n 's Deflected by different amounts

Separate outputs with lens or free propagation

Example of a polarizing beam splitter
$=$ polarizer with two outputs one for each state

But not a good design:

- Deflection depends on λ
- Significant reflection from surfaces
- Large common deflection inconvenient

Improve by putting two prisms together

Wollaston prism:

Typical angular separation $=15-20^{\circ}$
Good performance:

- Loss $\approx 10 \%$, or 1% if AR coated
- Leakage $\sim 10^{-5}$
- Works at high power

Various other designs, see optics catalogs

Another method: Glan-Thompson
Uses total internal reflection

Again calcite, with optical axis \perp page
Choose prism angle so that $n_{e} \sin \theta<1<n_{o} \sin \theta$ $\theta=40^{\circ}$ works

Then o-light is TIR, e-light is transmitted
(Gap is too big for frustrated TIR)

Performance similar to Wollaston

- Iow loss, low leakage
- high power capacity

Advantage: larger beam separation
no deviation of e beam
(deviation exaggerated in picture)

Wollaston and Glan-Thompson expensive $\$ 300-\$ 500$ or more

Summary:

- Polarizers transmit one polarization $T=T_{0}\left|{ }^{*} \cdot \mathbf{a}\right|^{2}$
- Most polarizers dichroic or birefringent Birefringent better, more \$
- Birefringence: n depends on $\hat{\jmath}$
- Uniaxial crystal: one special direction
- Retarders use birefringence
- Quarter-wave plate: make circ polarization
- Half-wave plate: rotate linear polarization

