Phys 531 Lecture 5 Fermat's Principle

Last time, talked about light scattering: total field = incident field + scattered field

Transmission through media:

 scattered field causes phase shift, looks like wave slows down

But individually, both waves travel at \boldsymbol{c}

1

Today: Start considering what happens at boundary between two materials

Get Law of Reflection, Snell's Law Generalize to Fermat's Principle

Outline:

- Optical materials
- Scattering and reflection
- Refraction
- Fermat's principle

Next time: finish studying boundaries

Optical Materials

Talked about index and absorption: Said good materials have no resonances in visible

Be a little more specific

What material to use in given application?

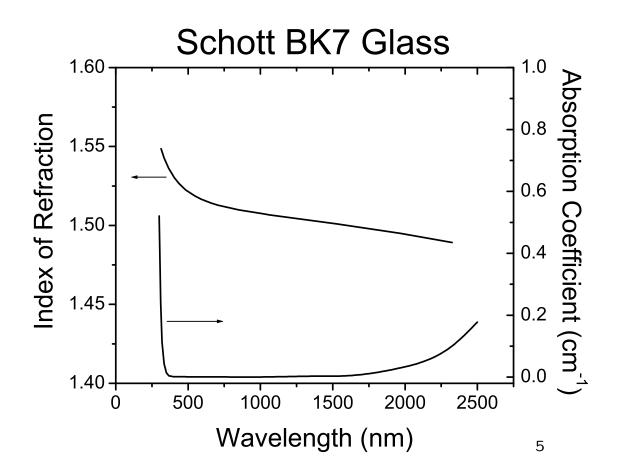
References:

- Optics catalogs (Melles Griot, CVI, Oriel)
- Schott Glass catalog

3

Most common optical glass: Schott BK7 SiO₂ with B₂O₅, Na₂O, CaO + others Index $n \approx 1.5$ Transmission range 350 - 2000 nm Few bubbles or defects

Use for windows, lenses in visible, near-infrared



Resonance in UV: electronic excitations

Resonance in IR:

molecular excitations

Impurities: several small resonances, $\lambda = 1-2 \ \mu m$ don't see on graph important for lasers, optical fibers

Question: Why does absorption increase so much more slowly in IR than in UV?

Other useful materials:

Schott SF11 glass: transmits 400 nm – 2 μ m $n \approx 1.7$ Pyrex: good mirror substrate Suprasil: transmits 150 nm – 2 μ m MgF₂: transmits 150 nm – 6 μ m used in coatings CaF₂: transmits 150 nm – 9 μ m Sapphire: transmits 200 nm – 6 μ m ZeSe: transmits 700 nm – 20 μ m Many others

7

Reflection (Hecht 4.3)

Again, two approaches possible:

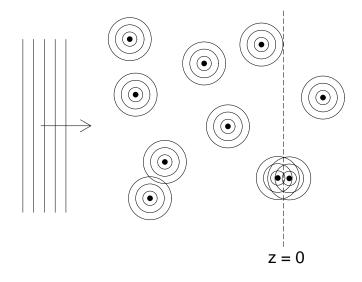
- Use Maxwell with $\epsilon_0 \rightarrow \epsilon$
- Think about scattered fields

Today: take scattering approach

try to understand physics

Next time: use Maxwell, get complete answers

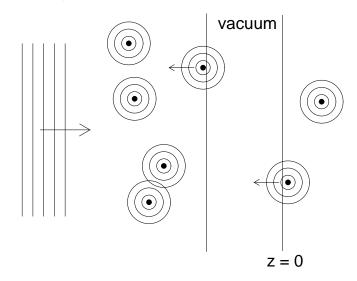
Start with light in piece of glass:



Why no reflection from say z = 0? Scattered waves from nearby atoms cancel out

9

Introduce gap at z = 0:



Missing atoms: scattered waves don't cancel Remove material, reflected wave appears! Expect wave from both surfaces

Fields should be equal and opposite:

would cancel if surfaces brought together

Funny point:

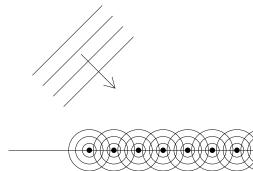
Does reflection comes from atoms at surface? No: Reflection = net wave from all atoms z > 0(Which atoms were missing ones cancelling?)

Question: If reflected light comes from all the atoms, shouldn't the reflected field change if you introduce a second surface downstream? How can that be?

11

Usually think about atoms on surface for simplicity

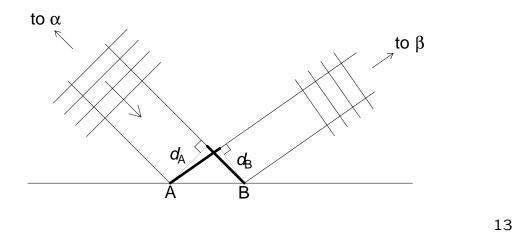
In general, incident light at an angle:



Expect reflected wave where all scattered fields have same phase

Say plane waves from distant source α , detect at distance point β

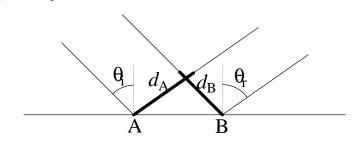
Consider scattered field from atoms A and B



Need fields from A and B to have same phase Say distance from α to A = L distance from B to $\beta = L'$

Incident field at $A = E_0 e^{i[kL - \omega t]}$ Incident field at $B = E_0 e^{i[k(L+d_B) - \omega t]}$ Scattered field from A at β $Ae^{ikL}e^{i[k(L'+d_A) - \omega t]}$ Scattered field from B at β : $Ae^{ik(L+d_B)}e^{i[kL'-\omega t]}$ Make phases equal: $L + L' + d_A = L + L' + d_B$

or $d_A = d_b$



angle of incidence θ_i

angle of reflection θ_r

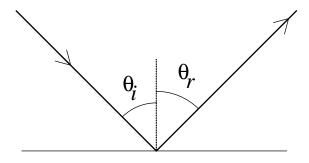
Need $\theta_i = \theta_r$: Law of Reflection

15

Typically just draw k-vectors

= "rays"

and don't think about all this scattering stuff



Just like balls bouncing off a wall

But good to know what's going on underneath

Sometimes, need 3D version of reflection law

Define $\hat{\mathbf{u}}$ = normal to surface

Then $\widehat{k}_{\text{refl}}$ in plane of \widehat{k}_{inc} and \widehat{u}

Get

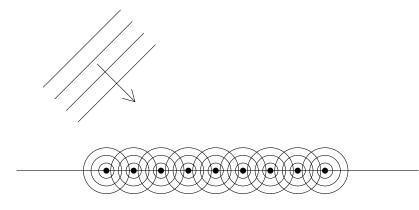
$$\hat{\mathbf{k}}_{\mathsf{refl}} = \hat{\mathbf{k}}_{\mathsf{inc}} - 2(\hat{\mathbf{k}}_{\mathsf{inc}} \cdot \hat{\mathbf{u}})\hat{\mathbf{u}}$$

Question: Should $\hat{\mathbf{u}}$ be normal pointing out of or into the surface?

17

Refraction (Hecht 4.4)

Think about transmitted wave



Now have $E_{tot} = E_{inc} + E_{scat}$

(For reflection, \mathbf{E}_{scat} and \mathbf{E}_{inc} more distinct)

But E_{scat} hard to calculate now:

- Scattered field is strong, gets rescattered
- Want field inside medium, close to charges

Be clever instead:

Incident medium: $n = n_1$ Total incident wave $= \mathbf{E}_1 e^{i(n_1 \mathbf{k}_1 \cdot \mathbf{r} - \omega t)}$ Take $\mathbf{k} = k_{1x}\hat{\mathbf{x}} + k_{1z}\hat{\mathbf{z}}$ Transmitted medium: $n = n_2$ Total transmitted wave $= \mathbf{E}_2 e^{i(n_2 \mathbf{k}_2 \cdot \mathbf{r} - \omega t)}$ Then $\mathbf{k} = k_{2x}\hat{\mathbf{x}} + k_{2z}\hat{\mathbf{z}}$

19

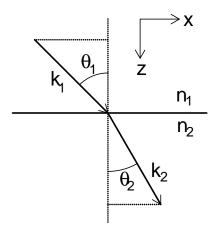
At boundary z = 0: $\mathbf{E}_{inc} = \mathbf{E}_1 e^{i(n_1 k_{1x} x - \omega t)}$ $\mathbf{E}_{trans} = \mathbf{E}_2 e^{i(n_2 k_{2x} x - \omega t)}$

Don't need E continous across boundary, do need phase difference independent of x

- Since boundary is uniform, phase relationship between waves can't depend on \boldsymbol{x}
- Same reason ω doesn't change, phase difference can't depend on time

So need $n_1k_{1x} = n_2k_{2x}$

Geometry:



 $k_{1x} = k_1 \sin \theta_1$ $k_{2x} = k_2 \sin \theta_2$

\sim	1
2	T.

Here k_1 and k_2 are vacuum k's: $k_1 = k_2 = \omega/c$ So if $n_1k_{1x} = n_2k_{2x}$ then $\frac{n_1\omega}{c}\sin\theta_1 = \frac{n_2\omega}{c}\sin\theta_2$ or $n_1\sin\theta_1 = n_2\sin\theta_2$ Snell's Law

Follows from:

- $\mathbf{k} \rightarrow n \mathbf{k}$ in medium
- symmetry of surface

Generalize to 3D:

Have $k_{\text{inc}},\;k_{\text{trans}}$ and surface normal \widehat{u} in same plane

Write

 $n_1\hat{\mathbf{k}}_1 \times \hat{\mathbf{u}} = n_2\hat{\mathbf{k}}_2 \times \hat{\mathbf{u}}$

or

 $k_1 \times \widehat{u} = k_2 \times \widehat{u}$

~	~
2	3
	-

Fermat's Principle (Hecht 4.5)

Can generalize previous results

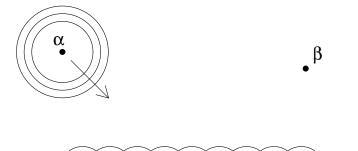
Think about reflection again

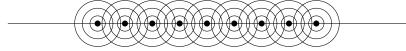
Before asked:

• Where does detector need to be to see reflected light?

Now ask:

• Given source and detector positions, which points on surface contribute to detected light?





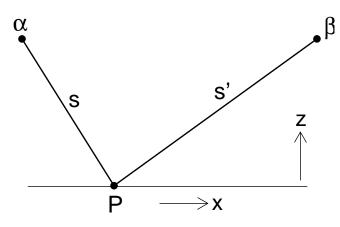
Which atoms on surface are radiating waves that interfere constructively at β ?

Hard to work out geometrically, since phase of \mathbf{E}_{inc} is complicated

(Even worse if surface is curved!)

25

Consider point P on surface



Incident field at $P = E_0 e^{i(ks-\omega t)}$ Field from P reaching β : $E'_0 e^{i[k(s+s')-\omega t]}$ Write $s + s' = S \equiv Optical Path Length$ Net phase at β : $\phi_P = kS$

Get constructive interference from points near P if fields from nearby points have same phase

Or: if S constant near P

If P labelled by coordinate x, want

$$\frac{d\mathcal{S}}{dx} = 0$$

0	7
2	1

Work this out

Say $\mathbf{r}_{\alpha} = (x_1, z_1)$ and $\mathbf{r}_{\beta} = (x_2, z_2)$ and $\mathbf{r}_P = (x, 0)$ (surface at z = 0, leave out y for now)

Then
$$S = s + s'$$

= $\sqrt{(x - x_1)^2 + z_1^2} + \sqrt{(x - x_2)^2 + z_2^2}$

and
$$\frac{dS}{dx} = \frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} + \frac{x - x_2}{\sqrt{(x - x_2)^2 + z_2^2}} = 0$$

Solve for x:
$$\frac{(x-x_1)^2}{(x-x_1)^2+z_1^2} = \frac{(x-x_2)^2}{(x-x_2)^2+z_2^2}$$

Invert:
$$1 + \frac{z_1^2}{(x - x_1)^2} = 1 + \frac{z_2^2}{(x - x_2)^2}$$

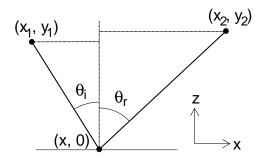
So $\frac{z_1}{x-x_1} = \pm \frac{z_2}{x-x_2}$

From original equation, need "-" root

Solve
$$x = \frac{x_1 z_2 + x_2 z_1}{z_1 + z_2}$$

0	O
2	9

Relate to geometry:



Had

$$\frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} = \frac{x_2 - x}{\sqrt{(x - x_2)^2 + z_2^2}}$$

Means $\sin \theta_i = \sin \theta_r$

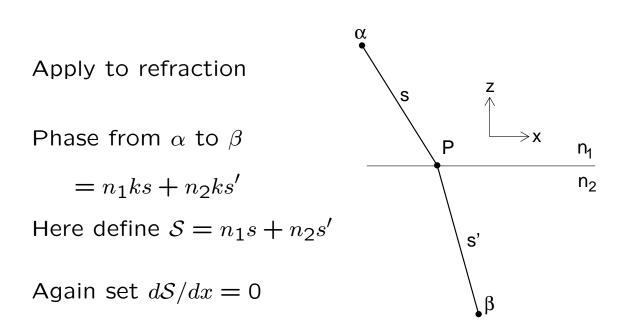
Again, $\theta_i = \theta_r$, law of reflection

Idea: light takes path such that S is stationary \equiv constant for small variations in path

"Path" identifies atoms whose scattered fields add constructively

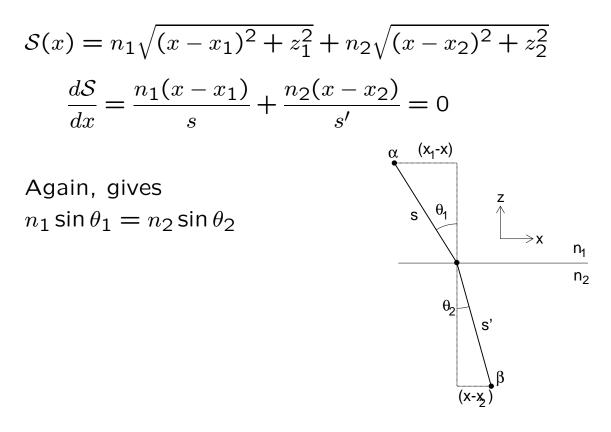
Called Fermat's Principle

Very powerful method



Question: Why do we want dS/dx = 0 here?

31



33

For arbitrary path, define

 $\mathcal{S} = \int n(\mathbf{r}) ds$ (integrated along path) Usually path = sum of straight line segments then $\int \rightarrow \Sigma$

Fermat's Principle: Light takes path such that ${\mathcal S}$ is stationary

Small variations in path, S doesn't change (could be min, max, or constant)

Question: What does Fermat's principle say about light travelling through free space?

To use:

If S is function of parameters $\{x_i\}$, want

$$\frac{\partial \mathcal{S}}{\partial x_i} = 0 \quad \text{for all } i$$

For physics students: Can allow arbitrary path variations write $\delta S = 0$, get differential equation for path Just like mechanics

35

Note, haven't really proven Fermat's Principle:

- Works for reflection makes sense from scattering picture
- Works for refraction scattering picture unclear
- Works in free space no scattering at all!

Also, ambiguous what "path" means for a wave

Revisit when we derive Huygens' Principle

Summary

For now, understand how light reflected, refracted can understand lenses, mirrors

- Law of reflection: $\theta_i = \theta_r$
- Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Fermat's principle: $S = \int n \, ds$

light travels path with ${\mathcal S}$ constant

37