Fresnel Relations

Last time, starting looking at how light propagates across boundaries.

Scattering idea → law of reflection, Snell's law Generalized to Fermat's principle

Important question:

How much light will be reflected vs transmitted?

Answer today using Maxwell equations

1

Outline:

- \bullet Boundary conditions for E and B
- Fresnel equations
- Brewster's angle
- Reflectance and transmittance

Everything today from Hecht 4.6

Next time: when the Fresnel equations become complex

Boundary Conditions

Maxwell equations in medium:

$$\epsilon_0 \nabla \cdot \mathbf{E} = -\nabla \cdot \mathbf{P} \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{P}}{\partial t} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

 $P = macroscopic polarization = \epsilon_0 \chi E$

Now consider $\chi = \chi(\mathbf{r})$

Rewrite:

$$\epsilon_0 \nabla \cdot [(1 + \chi)\mathbf{E}] = 0$$
 $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial}{\partial t} [(1 + \chi)\mathbf{E}]$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

Recall $\epsilon_0(1+\chi) \equiv \epsilon$, electric permittivity

Convenient to define $D = \epsilon E$ "Electric displacement" (units C/m²)

Then have

$$\nabla \cdot \mathbf{D} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{D}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

"Hides" charges of medium, even when crossing boundaries

Works for conductors too, if $\epsilon \to \text{complex}$

Know how wave propagates in uniform medium Don't know how to relate \mathbf{D} , \mathbf{E} and \mathbf{B} on opposite sides of boundary

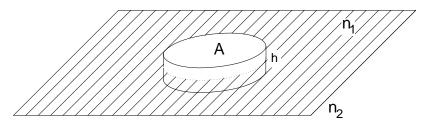
Easiest to go back to integral form:

If
$$\nabla \cdot \mathbf{D} = 0$$
, then $\iint \mathbf{D} \cdot d\mathbf{S} = 0$

See what this says about boundary

5

Make little pillbox surface on boundary: area A small but nonzero height $h \to 0$



Then
$$\iint \mathbf{D} \cdot d\mathbf{S} \to A(D_{1\perp} - D_{2\perp}) = 0$$
 where $D_{\perp} =$ compenent of \mathbf{D} normal to boundary

So D_{\perp} is continuous across boundary

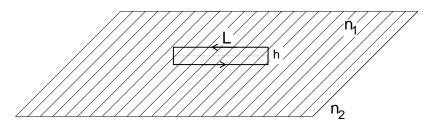
Also have

$$\oint \mathbf{E} \cdot \mathbf{dl} = -\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{dS}$$

Make little loop normal to boundary

length L small

height $h \rightarrow 0$



7

Then
$$\oint \mathbf{E} \cdot \mathbf{dl} \rightarrow L(E_{1\parallel} - E_{2\parallel})$$

 $E_{\parallel}=$ component of ${f E}$ parallel to boundary

And

$$\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{dS} \to \frac{Lh}{2} \left(\frac{\partial B_{1\parallel}}{\partial t} + \frac{\partial B_{2\parallel}}{\partial t} \right)$$
$$= 0 \quad \text{for } h \to 0$$

So \mathbf{E}_{\parallel} is continuous across boundary

Similarly, from

$$\iint \mathbf{B} \cdot \mathbf{dS} = 0 \text{ and } \oint \mathbf{B} \cdot \mathbf{dl} = \mu_0 \iint \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{dS}$$

show that B_{\perp} and B_{\parallel} are continous

So B is same on either side of boundary

Note: only true for nonmagnetic materials (normal in optics)

Hecht gives general formulas

9

Apply continuity conditions to boundary $n_i
ightarrow n_t$ Three fields:

Incident $\mathbf{E}_i = \mathbf{E}_{i0}e^{i(\mathbf{k}_i\cdot\mathbf{r}-\omega t)}$

Reflected $\mathbf{E}_r = \mathbf{E}_{r0}e^{i(\mathbf{k}_r \cdot \mathbf{r} - \omega t)}$

Transmitted $\mathbf{E}_t = \mathbf{E}_{t0} e^{i(\mathbf{k}_t \cdot \mathbf{r} - \omega t)}$

Here $\mathbf{k}_i = n_i \frac{\omega}{c} \hat{\mathbf{k}}_i$ etc. Also have $\mathbf{B} = \frac{n}{c} \hat{\mathbf{k}} \times \mathbf{E}$ for each

Want to determine \mathbf{E}_r and \mathbf{E}_t if given \mathbf{E}_i

Set up coordinates so $k_y = 0$ always

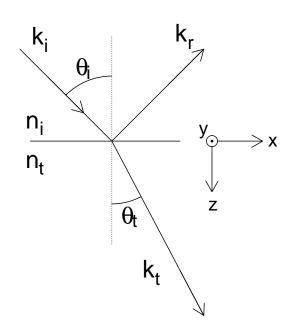
At z = 0, have:

$$B_i + B_r = B_t$$

$$E_{ix} + E_{rx} = E_{tx}$$

$$E_{iy} + E_{ry} = E_{ty}$$

$$n_i^2 E_{iz} + n_i^2 E_{rz} = n_t^2 E_{tz}$$



Question: Wait, where did those n^2 's come from?

11

 E_x equation says

$$E_{i0x}e^{i(k_{ix}x-\omega t)} + E_{r0x}e^{i(k_{rx}x-\omega t)} = E_{t0x}e^{i(k_{tx}x-\omega t)}$$

for all \boldsymbol{x}

Only possible if $k_{ix} = k_{rx} = k_{tx}$

Implies $\sin \theta_i = \sin \theta_r$ and $n_i \sin \theta_i = n_t \sin \theta_t$

Gives law of reflection, Snell's law

So x dependence drops out, leaves equations for amplitudes \mathbf{E}_0 , \mathbf{B}_0

example:
$$E_{i0x} + E_{r0x} = E_{t0x}$$

Easiest to separate two cases:

Case I:
$$E_{i0x}=0$$

Then all E_x components = 0
So \mathbf{E}_0 's are \bot to plane of incidence
Called "s-polarized" or "TE-polarized"

Case II:
$$E_{i0y}=0$$

Then all E_y components = 0
So \mathbf{E}_0 's are in plane of incidence
Called "p-polarized" or "TM-polarized"

Can write general wave as superposition of these

13

Case I:
$$\mathbf{E} \propto \hat{\mathbf{y}}$$

So
$${f B}$$
 in xz -plane

Continuity:

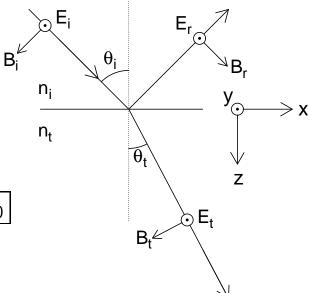
$$E_{i0y} = E_{i0}$$
 etc,
so $E_{i0} + E_{r0} = E_{t0}$

For B:

$$B_{i0x} = -B_{i0}\cos\theta_i$$

$$B_{r0x} = B_{r0}\cos\theta_i$$

$$B_{t0x} = -B_{t0}\cos\theta_t$$



Have
$$B_{i0x}+B_{r0x}=B_{t0x}$$
, and
$$B_{i0x}=\frac{n_i}{c}E_{i0} \text{ etc.}$$

SO

$$-n_i E_{i0} \cos \theta_i + n_i E_{r0} \cos \theta_i = -n_t E_{t0} \cos \theta_t$$

Two equations, two unknowns E_{r0} and E_{t0} (B_z equation is redundant)

15

Solve:

$$(E_{i0} - E_{r0})n_i \cos \theta_i = E_{t0}n_t \cos \theta_t$$
$$= (E_{i0} + E_{r0})n_t \cos \theta_t$$

$$E_{i0}(n_i \cos \theta_i - n_t \cos \theta_t) = E_{r0}(n_i \cos \theta_i + n_t \cos \theta_t)$$

Write $E_{r0} = r_{\perp} E_{i0}$ for

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

 r_{\perp} = amplitude reflection coefficient (for TE polarization)

Then get E_{t0} :

$$(E_{i0} - E_{r0})n_i \cos \theta_i = E_{t0}n_t \cos \theta_t$$

$$E_{t0} = \frac{n_i \cos \theta_i}{n_t \cos \theta_t} (1 - r_\perp) E_{i0}$$

Define $E_{t0} = t_{\perp} E_{i0}$

$$t_{\perp} = \frac{n_i \cos \theta_i}{n_t \cos \theta_t} (1 - r_{\perp})$$
$$= \frac{n_i \cos \theta_i}{n_t \cos \theta_t} \frac{2n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

17

So
$$t_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

amplitude transmission coefficient (s-polarization)

This solves case I

Question: What happens to r_{\perp} and t_{\perp} if $n_i = n_t$?

Case II:

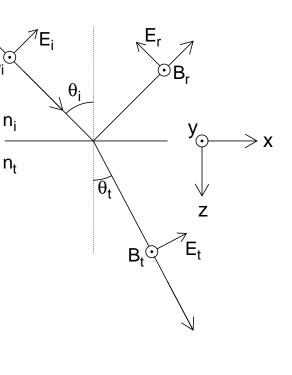
Now have $\mathbf{B} \perp$ plane

$$B_{i0} + B_{r0} = B_{t0}$$

or
$$n_i E_{i0} + n_i E_{r0} = n_t E_{t0}$$

For E:
$$E_{i0x} = E_{i0} \cos \theta_i$$

 $E_{r0x} = -E_{r0} \cos \theta_i$
 $E_{t0x} = E_{t0} \cos \theta_t$



$$E_{i0}\cos\theta_i - E_{r0}\cos\theta_i = E_{t0}\cos\theta_t$$

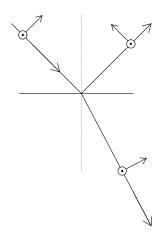
19

Solve, get $E_{r0} = r_{\parallel} E_{i0}$, $E_{t0} = t_{\parallel} E_{i0}$

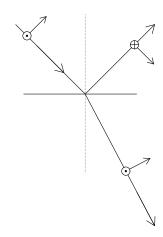
$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$t_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Call r's, t's Fresnel coefficients, equations are Fresnel relations Note: signs depend on picture set up



VS.



Gives opposite sign for r's Hecht's set up most common

Question: At normal incidence $r_{\perp}=-r_{\parallel}.$ How are the actual directions of ${\bf E}_{\sf inc}$ and ${\bf E}_{\sf ref}$ related?

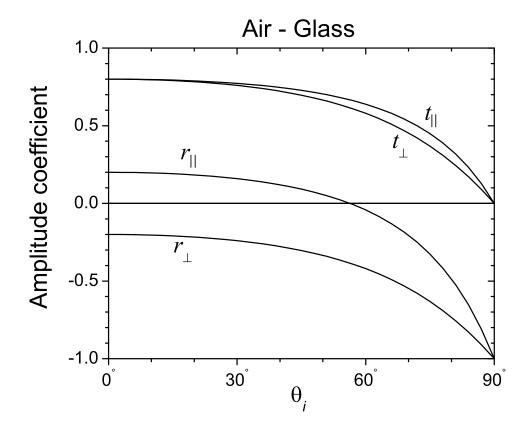
21

For now consider $n_i < n_t$: "external incidence" Plot for air $(n_i = 1) \rightarrow \text{glass } (n_t = 1.5)$

Need to use Snell's Law to get θ_t

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t}$$
$$= \sqrt{1 - \frac{n_i^2}{n_t^2} \sin^2 \theta_i}$$

Question: Do we need to worry about \pm with square root?



23

Features:

$$ullet$$
 $r_{\perp}=-r_{\parallel}$ at $heta_i=0$

No physical difference between TE and TM Picture difference gives minus sign

$$ullet$$
 $r
ightarrow 1$ as $heta_i
ightarrow 90^\circ$

Everything reflects at glancing incidence

$$ullet$$
 $r_{\parallel}
ightarrow {
m 0}$ at $heta_i = heta_p$

Usually called Brewster's angle Hecht calls "polarization angle"

Demo!

Brewster's angle important for lasers best way to minimize reflections

Solve
$$r_{\parallel} = 0$$
: $n_t \cos \theta_p = n_i \cos \theta_t$

$$\operatorname{Get} \sin \theta_p = \frac{n_t}{\sqrt{n_i^2 + n_t^2}}$$

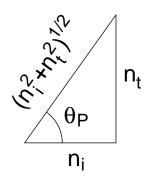
Get some insight:

See
$$\tan \theta_p = n_t/n_i$$

So
$$n_i \sin \theta_p = n_t \cos \theta_p$$

But
$$n_t \cos \theta_p = n_i \cos \theta_t$$

so $\sin \theta_p = \cos \theta_t \Rightarrow \theta_p + \theta_t = 90^\circ$



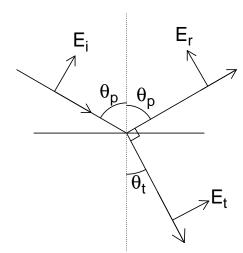
$$\theta_p + \theta_t = 90^{\circ}$$

25

Picture:

Atoms in transmitted medium oscillate along \mathbf{E}_t

Dipole radiation $\rightarrow 0$ in direction of oscillation



Brewster's angle:

when direction of oscillation $= \hat{k}_{reflect}$

For air
$$\rightarrow$$
 glass, $\theta_p = 56.3^{\circ}$

Note, r and t are amplitude coefficients: give E-fields

Usually more interested in transmitted and reflected power ${\cal P}$

Define reflectance $R = P_{ref}/P_{inc}$ transmittance $T = P_{trans}/P_{inc}$

Get P from Poynting vector S:

Plane waves:
$$S = \frac{n}{2\eta_0} |E_0|^2 \hat{k}$$

27

Power through area $dA = \mathbf{S} \cdot \hat{\mathbf{u}} \, dA$ $\hat{\mathbf{u}} = \text{normal to surface}$ here $\hat{\mathbf{k}} \cdot \hat{\mathbf{u}} = \cos \theta$

So
$$P_{\text{inc}} = \frac{n_i}{2\eta_0} |E_{i0}|^2 \cos \theta_i dA$$

$$P_{\text{refl}} = \frac{n_i}{2\eta_0} |E_{j0}|^2 \cos \theta_i \, dA$$

$$P_{\mathsf{trans}} = \frac{n_t}{2\eta_0} |E_{t0}|^2 \cos \theta_t \, dA$$

Then

$$R = \frac{P_{\text{ref}}}{P_{\text{inc}}} = \frac{|E_{r0}|^2}{|E_{i0}|^2} = |r|^2$$

and

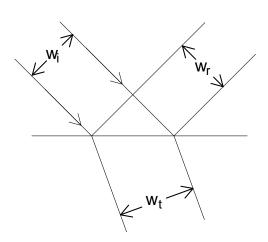
$$T = \frac{P_{\text{trans}}}{P_{\text{inc}}} = \frac{n_t \cos \theta_t |E_{t0}|^2}{n_i \cos \theta_i |E_{i0}|^2} = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} |t|^2$$

Extra factors in T make sense:

- n accounts for difference in speed
- \bullet cos θ accounts for difference in area

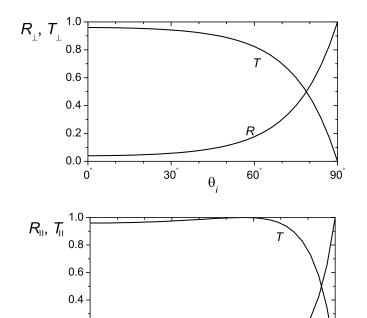
29

Here $w_t > w_i$ Irradiance decreases even if all power transmitted



Can show R + T = 1 for both \perp and \parallel cases

• Energy conserved (if n is real)



31

Summary:

0.2

• Maxwell equations give continuity relations

30°

60°

 θ_{i}

- ullet Fresnel coefficients r, t relate $\mathbf{E}_{\mathsf{inc}}$, $\mathbf{E}_{\mathsf{ref}}$, $\mathbf{E}_{\mathsf{trans}}$
- ullet Two cases ot (= TE = s) and $\|$ (= TM = p) are different
- ullet TM case exhibits Brewster's angle, $r(heta_p)=0$
- ullet Fresnel coeffs related to power reflectance R, transmittance T
- ullet Air-glass boundary reflects 4% at $heta_i=0$