Last time, starting looking at how light propagates across boundaries.

Scattering idea \rightarrow Iaw of reflection, Snell's law Generalized to Fermat's principle

Important question:
How much light will be reflected vs transmitted?
Answer today using Maxwell equations

Outline:

- Boundary conditions for \mathbf{E} and \mathbf{B}
- Fresnel equations
- Brewster's angle
- Reflectance and transmittance

Everything today from Hecht 4.6

Next time: when the Fresnel equations become complex

Boundary Conditions

Maxwell equations in medium:

$$
\begin{array}{ll}
\epsilon_{0} \nabla \cdot \mathbf{E}=-\nabla \cdot \mathbf{P} & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{B}=\mu_{0} \frac{\partial \mathbf{P}}{\partial t}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{array}
$$

$\mathbf{P}=$ macroscopic polarization $=\epsilon_{0} \chi \mathbf{E}$
Now consider $\chi=\chi(\mathbf{r})$
Rewrite:

$$
\begin{array}{ll}
\epsilon_{0} \nabla \cdot[(1+\chi) \mathbf{E}]=0 & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial}{\partial t}[(1+\chi) \mathbf{E}] & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{array}
$$

Recall $\epsilon_{0}(1+\chi) \equiv \epsilon$, electric permittivity
Convenient to define $\mathbf{D}=\epsilon \mathbf{E}$
"Electric displacement" (units $\mathrm{C} / \mathrm{m}^{2}$)
Then have

$$
\begin{array}{ll}
\nabla \cdot \mathbf{D}=0 & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{B}=\mu_{0} \frac{\partial \mathbf{D}}{\partial t} & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{array}
$$

"Hides" charges of medium, even when crossing boundaries

Works for conductors too, if $\epsilon \rightarrow$ complex

Know how wave propagates in uniform medium Don't know how to relate \mathbf{D}, \mathbf{E} and \mathbf{B} on opposite sides of boundary

Easiest to go back to integral form:
If $\nabla \cdot \mathbf{D}=0$, then $\oiint \mathbf{D} \cdot \mathbf{d S}=0$
See what this says about boundary

Make little pillbox surface on boundary: area A small but nonzero height $h \rightarrow 0$

Then $\oiint \mathbf{D} \cdot \mathrm{dS} \rightarrow A\left(D_{1 \perp}-D_{2 \perp}\right)=0$
where $D_{\perp}=$ compenent of \mathbf{D} normal to boundary

So D_{\perp} is continuous across boundary

Also have

$$
\oint \mathbf{E} \cdot \mathrm{dl}=-\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{~d} \mathbf{S}
$$

Make little loop normal to boundary length L small
height $h \rightarrow 0$

Then $\oint \mathbf{E} \cdot \mathrm{dl} \rightarrow L\left(E_{1 \|}-E_{2 \|}\right)$
$E_{\|}=$component of \mathbf{E} parallel to boundary
And

$$
\begin{aligned}
\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{d S} & \rightarrow \frac{L h}{2}\left(\frac{\partial B_{1 \|}}{\partial t}+\frac{\partial B_{2 \|}}{\partial t}\right) \\
& =0 \quad \text { for } h \rightarrow 0
\end{aligned}
$$

So $\mathbf{E}_{\|}$is continuous across boundary

Similarly, from

$$
\oiint \mathbf{B} \cdot \mathbf{d S}=0 \text { and } \oint \mathbf{B} \cdot \mathbf{d l}=\mu_{0} \iint \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{d S}
$$

show that B_{\perp} and $B_{\|}$are continous
So B is same on either side of boundary

Note: only true for nonmagnetic materials (normal in optics)
Hecht gives general formulas

Apply continuity conditions to boundary $n_{i} \rightarrow n_{t}$ Three fields:

Incident $\mathbf{E}_{i}=\mathbf{E}_{i 0} e^{i\left(\mathbf{k}_{i} \cdot \mathbf{r}-\omega t\right)}$
Reflected $\mathbf{E}_{r}=\mathbf{E}_{r 0} e^{i\left(\mathbf{k}_{r} \cdot \mathbf{r}-\omega t\right)}$
Transmitted $\mathbf{E}_{t}=\mathbf{E}_{t 0} e^{i\left(\mathbf{k}_{t} \cdot \mathbf{r}-\omega t\right)}$
Here $\mathbf{k}_{i}=n_{i} \frac{\omega}{c} \widehat{\mathbf{k}}_{i}$ etc. Also have $\mathbf{B}=\frac{n}{c} \widehat{\mathbf{k}} \times \mathbf{E}$ for each

Want to determine \mathbf{E}_{r} and \mathbf{E}_{t} if given \mathbf{E}_{i}

Set up coordinates
so $k_{y}=0$ always

$$
\begin{aligned}
& \text { At } z=0, \text { have: } \\
& \qquad \begin{array}{l}
\mathbf{B}_{i}+\mathbf{B}_{r}=\mathbf{B}_{t} \\
\\
\quad E_{i x}+E_{r x}=E_{t x} \\
\\
\quad E_{i y}+E_{r y}=E_{t y} \\
\\
n_{i}^{2} E_{i z}+n_{i}^{2} E_{r z}=n_{t}^{2} E_{t z}
\end{array}
\end{aligned}
$$

Question: Wait, where did those n^{2} 's come from?
E_{x} equation says

$$
E_{i 0 x} e^{i\left(k_{i x} x-\omega t\right)}+E_{r 0 x} e^{i\left(k_{r x} x-\omega t\right)}=E_{t 0 x} e^{i\left(k_{t x} x-\omega t\right)}
$$

for all x
Only possible if $k_{i x}=k_{r x}=k_{t x}$
Implies $\sin \theta_{i}=\sin \theta_{r}$ and $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$

- Gives law of reflection, Snell's law

So x dependence drops out, leaves equations for amplitudes $\mathbf{E}_{0}, \mathbf{B}_{0}$
example: $E_{i 0 x}+E_{r 0 x}=E_{t 0 x}$

Easiest to separate two cases:
Case I: $E_{i 0 x}=0$
Then all E_{x} components $=0$
So \mathbf{E}_{0} 's are \perp to plane of incidence
Called "s-polarized" or "TE-polarized"

Case II: $E_{i 0 y}=0$
Then all E_{y} components $=0$
So E_{0} 's are in plane of incidence
Called "p-polarized" or "TM-polarized"

Can write general wave as superposition of these
13

Case I: $\mathbf{E} \propto \hat{\mathbf{y}}$
So \mathbf{B} in $x z$-plane
Continuity:
$E_{i 0 y}=E_{i 0}$ etc,

$$
\text { so } E_{i 0}+E_{r 0}=E_{t 0}
$$

For B:

$$
\begin{aligned}
& B_{i 0 x}=-B_{i 0} \cos \theta_{i} \\
& B_{r 0 x}=B_{r 0} \cos \theta_{i} \\
& B_{t 0 x}=-B_{t 0} \cos \theta_{t}
\end{aligned}
$$

Have $B_{i 0 x}+B_{r 0 x}=B_{t 0 x}$, and

$$
B_{i 0 x}=\frac{n_{i}}{c} E_{i 0} \text { etc. }
$$

SO

$$
-n_{i} E_{i 0} \cos \theta_{i}+n_{i} E_{r 0} \cos \theta_{i}=-n_{t} E_{t 0} \cos \theta_{t}
$$

Two equations, two unknowns $E_{r 0}$ and $E_{t 0}$ (B_{z} equation is redundant)

Solve:

$$
\begin{aligned}
\left(E_{i 0}-E_{r 0}\right) n_{i} \cos \theta_{i} & =E_{t 0} n_{t} \cos \theta_{t} \\
& =\left(E_{i 0}+E_{r 0}\right) n_{t} \cos \theta_{t}
\end{aligned}
$$

$$
E_{i 0}\left(n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}\right)=E_{r 0}\left(n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}\right)
$$

Write $E_{r 0}=r_{\perp} E_{i 0}$ for

$$
r_{\perp}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}
$$

$r_{\perp}=$ amplitude reflection coefficient (for TE polarization)

Then get $E_{t 0}$:

$$
\begin{aligned}
& \left(E_{i 0}-E_{r 0}\right) n_{i} \cos \theta_{i}=E_{t 0} n_{t} \cos \theta_{t} \\
& E_{t 0}=\frac{n_{i} \cos \theta_{i}}{n_{t} \cos \theta_{t}}\left(1-r_{\perp}\right) E_{i 0}
\end{aligned}
$$

Define $E_{t 0}=t_{\perp} E_{i 0}$

$$
\begin{aligned}
t_{\perp} & =\frac{n_{i} \cos \theta_{i}}{n_{t} \cos \theta_{t}}\left(1-r_{\perp}\right) \\
& =\frac{n_{i} \cos \theta_{i}}{n_{t} \cos \theta_{t}} \frac{2 n_{t} \cos \theta_{t} \cos \theta_{i}+n_{t} \cos \theta_{t}}{}
\end{aligned}
$$

So $t_{\perp}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}$ amplitude transmission coefficient (s-polarization)

This solves case I

Question: What happens to r_{\perp} and t_{\perp} if $n_{i}=n_{t}$?

Case II:

Now have $\mathbf{B} \perp$ plane

$$
B_{i 0}+B_{r 0}=B_{t 0}
$$

or $n_{i} E_{i 0}+n_{i} E_{r 0}=n_{t} E_{t 0}$
For E: $E_{i 0 x}=E_{i 0} \cos \theta_{i}$

$$
\begin{gathered}
E_{r 0 x}=-E_{r 0} \cos \theta_{i} \\
E_{t 0 x}=E_{t 0} \cos \theta_{t} \\
E_{i 0} \cos \theta_{i}-E_{r 0} \cos \theta_{i}=E_{t 0} \cos \theta_{t}
\end{gathered}
$$

Solve, get $E_{r 0}=r_{\|} E_{i 0}, E_{t 0}=t_{\|} E_{i 0}$

$$
\begin{aligned}
& r_{\|}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}} \\
& t_{\|}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}
\end{aligned}
$$

Call r 's, t 's Fresnel coefficients, equations are Fresnel relations

Note: signs depend on picture set up

VS.

Gives opposite sign for r 's Hecht's set up most common

Question: At normal incidence $r_{\perp}=-r_{\|}$. How are the actual directions of $\mathbf{E}_{\text {inc }}$ and $\mathbf{E}_{\text {ref }}$ related?

For now consider $n_{i}<n_{t}$: "external incidence" Plot for air $\left(n_{i}=1\right) \rightarrow$ glass $\left(n_{t}=1.5\right)$

Need to use Snell's Law to get θ_{t}

$$
\begin{aligned}
\cos \theta_{t} & =\sqrt{1-\sin ^{2} \theta_{t}} \\
& =\sqrt{1-\frac{n_{i}^{2}}{n_{t}^{2}} \sin ^{2} \theta_{i}}
\end{aligned}
$$

Question: Do we need to worry about \pm with square root?

23

Features:

- $r_{\perp}=-r_{\|}$at $\theta_{i}=0$

No physical difference between TE and TM
Picture difference gives minus sign

- $r \rightarrow 1$ as $\theta_{i} \rightarrow 90^{\circ}$

Everything reflects at glancing incidence

- $r_{\|} \rightarrow 0$ at $\theta_{i}=\theta_{p}$

Usually called Brewster's angle Hecht calls "polarization angle"

Demo!

Brewster's angle important for lasers best way to minimize reflections

Solve $r_{\|}=0: n_{t} \cos \theta_{p}=n_{i} \cos \theta_{t}$
Get $\sin \theta_{p}=\frac{n_{t}}{\sqrt{n_{i}^{2}+n_{t}^{2}}}$
Get some insight:
See $\tan \theta_{p}=n_{t} / n_{i}$
So $n_{i} \sin \theta_{p}=n_{t} \cos \theta_{p}$

But $n_{t} \cos \theta_{p}=n_{i} \cos \theta_{t}$
so $\sin \theta_{p}=\cos \theta_{t} \quad \Rightarrow \quad \theta_{p}+\theta_{t}=90^{\circ}$

Picture:

Atoms in transmitted medium oscillate along \mathbf{E}_{t}

Dipole radiation $\rightarrow 0$ in direction of oscillation

Brewster's angle:
 when direction of oscillation $=\widehat{\mathrm{k}}_{\text {reflect }}$

For air \rightarrow glass, $\theta_{p}=56.3^{\circ}$

Note, r and t are amplitude coefficients: give E-fields

Usually more interested in transmitted and reflected power P

Define reflectance $R=P_{\text {ref }} / P_{\text {inc }}$ transmittance $T=P_{\text {trans }} / P_{\text {inc }}$

Get P from Poynting vector \mathbf{S} :
Plane waves: $\mathbf{S}=\frac{n}{2 \eta_{0}}\left|E_{0}\right|^{2} \widehat{\mathbf{k}}$

Power through area $d A=\mathbf{S} \cdot \hat{\mathbf{u}} d A$
$\widehat{\mathbf{u}}=$ normal to surface
here $\widehat{\mathbf{k}} \cdot \widehat{\mathbf{u}}=\cos \theta$
So $P_{\mathrm{inc}}=\frac{n_{i}}{2 \eta_{0}}\left|E_{i 0}\right|^{2} \cos \theta_{i} d A$

$$
P_{\mathrm{refl}}=\frac{n_{i}}{2 \eta_{0}}\left|E_{j \mathrm{o}}\right|^{2} \cos \theta_{i} d A
$$

$$
P_{\text {trans }}=\frac{n_{t}}{2 \eta_{0}}\left|E_{t 0}\right|^{2} \cos \theta_{t} d A
$$

Then

$$
R=\frac{P_{\mathrm{ref}}}{P_{\mathrm{inc}}}=\frac{\left|E_{r 0}\right|^{2}}{\left|E_{i 0}\right|^{2}}=|r|^{2}
$$

and

$$
T=\frac{P_{\text {trans }}}{P_{\mathrm{inc}}}=\frac{n_{t} \cos \theta_{t}\left|E_{t 0}\right|^{2}}{n_{i} \cos \theta_{i}\left|E_{i 0}\right|^{2}}=\frac{n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}}|t|^{2}
$$

Extra factors in T make sense:

- n accounts for difference in speed
- $\cos \theta$ accounts for difference in area

Here $w_{t}>w_{i}$
Irradiance decreases even if all power transmitted

Can show $R+T=1$ for both \perp and $\|$ cases

- Energy conserved (if n is real)

Summary:

- Maxwell equations give continuity relations
- Fresnel coefficients r, t relate $\mathbf{E}_{\text {inc }}, \mathbf{E}_{\text {ref }}, \mathbf{E}_{\text {trans }}$
- Two cases $\perp(=$ TE $=s)$ and $\|(=$ TM $=p)$ are different
- TM case exhibits Brewster's angle, $r\left(\theta_{p}\right)=0$
- Fresnel coeffs related to power reflectance R, transmittance T
- Air-glass boundary reflects 4% at $\theta_{i}=0$

