Phys 531Lecture 715 September 2005Total Internal Reflection & Metal Mirrors

Last time, derived Fresnel relations

Give amplitude of reflected, transmitted waves at boundary

Focused on simple boundaries: air \rightarrow glass

1

Today, consider more complicated situations

- Total internal reflection
 - Evanescant waves
- Materials with complex index

This will wrap up unit on fundamental theory

Next time: ray optics

Total Internal Reflection (Hecht 4.7)

So far, considered $n_i < n_t$

If $n_i > n_t$, problem with Snell's Law:

$$\sin \theta_t = \frac{n_i}{n_t} \sin \theta_i$$

What if $(n_i/n_t) \sin \theta_i > 1$?

For instance, glass $(n_i = 1.5) \rightarrow \text{air } (n_t = 1)$: if $\theta_i > 41.8^\circ$, then $\sin \theta_i > \frac{1}{1.5}$

Demo!

\sim
≺
<u> </u>

For $\sin \theta_i > \sin \theta_c \equiv n_t/n_i$, all light is reflected Called *total internal reflection* = TIR only occurs when light exits medium (high $n \rightarrow \text{low } n$)

Would like to understand from Fresnel relations

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$
$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

How can we use? Don't have a $\theta_t!$

Trick: use complex θ_t

Say $\theta_t = a + ib$

Considered $\cos \theta_t$ in homework 1 Look at $\sin \theta_t$ now

Use

$$\sin(a+ib) = \sin(a)\cos(ib) + \cos(a)\sin(ib)$$

Just need sin(ib), cos(ib)

5			
5	r	_	
<u> </u>	Ŀ	~	
\sim			
	۰.	-	

Euler identity gives:
$$sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

 $cos(x) = \frac{1}{2} \left(e^{ix} - e^{-ix} \right)$

So
$$\sin(ib) = \frac{1}{2i} \left(e^{i(ib)} - e^{-i(ib)} \right)$$
$$= -\frac{i}{2} \left(e^{-b} - e^{b} \right)$$

Hyperbolic sine: $\sinh(x) \equiv \frac{1}{2} \left(e^x - e^{-x} \right)$ So $\sin(ib) = i \sinh(b)$ Hyperbolic sine and cosine:

7

Also

$$\cos(ib) = \frac{1}{2} \left(e^{i(ib)} + e^{-i(ib)} \right)$$
$$= \frac{1}{2} \left(e^{-b} + e^{b} \right)$$
$$\equiv \cosh(b)$$

Hyperbolic cosine

So:
$$sin(a + ib) = sin(a) cosh(b) + i cos(a) sinh(b)$$

For large b, $\sinh b$, $\cosh b \rightarrow e^b$ no problem satisfying $n_i \sin \theta_i = n_t \sin \theta_t$ Want $n_i \sin \theta_i = n_t \sin \theta_t$ with complex θ_t

Assume $n_i \sin \theta_i$ and n_t real: Then Im $[n_t \sin \theta_t] = n_t \cos(a) \sinh(b) = 0$ Don't want b = 0, so take $a = \frac{\pi}{2}$ Gives $\sin \theta_t = \cosh b$

Snell's law becomes

 $n_i \sin \theta_i = n_t \cosh b$

Note $\cosh b > 1$, require $\sin \theta_i > n_t/n_i \equiv \sin \theta_c$

Example: What is the complex transmission angle for light propagating from glass to air with an angle of incidence of 60°?

If $\theta_i = 60^\circ$ then $b = \cosh^{-1}[1.5\sin(60^\circ)] = 0.755$ So $\theta_t = \frac{\pi}{2} + 0.755i$ Just need a good calculator!

Question: What are the units of b?

What happens to Fresnel coefficients?

Need
$$\cos \theta_t = \cos \left(\frac{\pi}{2} + ib\right)$$

= $-i \sinh(b)$

pure imaginary

So
$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

 $\rightarrow \frac{n_i \cos \theta_i - in_t \sinh b}{n_i \cos \theta_i + in_t \sinh b}$ complex!

Still have
$$E_{r0} = rE_{i0}$$

complex r : phase shift between \mathbf{E}_{inc} and \mathbf{E}_{refl}
Both r_{\perp} and r_{\parallel} have form

$$\begin{aligned} r &= \frac{u + iv}{u - iv} \\ r_{\perp} &: u = n_i \cos \theta_i \text{ and } v = n_t \sinh b \\ r_{\parallel} &: u = n_t \cos \theta_i \text{ and } v = n_i \sinh b \end{aligned}$$

If
$$z = u + iv$$
, then $r = z/z^*$
So $|r| = \frac{|z|}{|z^*|} = 1$: all light reflected

Write $z = |z|e^{i\phi}$, then $r = e^{2i\phi}$

Reflection phase shift: $2\phi = 2 \tan^{-1} \left(\frac{v}{u}\right)$

To calculate numerically, just use good calculator (or computer program):

Evaluate

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

for $\theta_t = \sin^{-1} \left(\frac{n_i}{n_t} \sin \theta_i\right)$

Let computer deal with complex math

13

Plot for glass \rightarrow air:

For TIR, $R = |r|^2 = 1$ so all power reflected

But also have

$$t_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$t_{\parallel} = \frac{2n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$
do not equal zero!?

Have a transmitted field $(t \neq 0)$ but doesn't carry any energy (R = 1)

Question: How might this contradiction be resolved?

To see:
Transmitted wave:
$$\mathbf{E}_t = \mathbf{E}_{t0}e^{i(\mathbf{k}_t \cdot \mathbf{r} - \omega t)}$$

with $\mathbf{k}_t = |k_t|(\sin \theta_t \hat{\mathbf{x}} + \cos \theta_t \hat{\mathbf{z}})$
For TIR, $\theta_t = \frac{\pi}{2} + b$
 $\sin \theta_t \to \cosh b$
 $\cos \theta_t \to i \sinh b$
So $\mathbf{k}_t \to k_t(\cosh b\hat{\mathbf{x}} + i \sinh b\hat{\mathbf{z}})$
 $y \to \mathbf{x}$

Transmitted field

$$\mathbf{E}_t \to \mathbf{E}_{t0} e^{i[k_t(x \cosh b + iz \sinh b) - \omega t]}$$
$$= \mathbf{E}_{t0} e^{-k_t z \sinh b} e^{i(k_t x \cosh b - \omega t)}$$

Wave propagates in x direction Decays exponentially in z direction

• Carries no energy away from surface

Called evanenscent wave

(Not same as exponential decay from absorption!)

17

Evanescent wave can be observed

Get transmission from tail of evanescent wave

- For gap d, amplitude of transmitted wave $\approx e^{-k_t d \sinh b}$
- reflection \rightarrow 0 smoothly as $d \rightarrow$ 0

Called frustrated total internal reflection

Completely analogous to tunneling in QM

19

Still hope T = 0 for plain TIR

Should have defined
$$T = \operatorname{Re}\left[\frac{n_t \cos \theta_t}{n_i \cos \theta_i}\right] |t|^2$$

In TIR, $\cos \theta_t = -i \sinh b$ real part = 0 So T = 0, as needed

Raises question: what if n_i or n_t is complex?

Reflection from metals (Hecht 4.8)

Saw previously that in absorbing medium

$$n \to n + i \frac{\alpha}{2k_0}$$

 α = absorption coefficient

Get
$$\mathbf{E} = \mathbf{E}_0 e^{i(n\mathbf{k}_0 \cdot \mathbf{r} - \omega t)}$$

 $\rightarrow \mathbf{E}_0 e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}/2} e^{i(n\mathbf{k} \cdot \mathbf{r} - \omega t)}$
and $I \propto |E_0|^2 \propto e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}}$

Wave attenuates as it propagates

21

Question: How could you distinguish an evanescent wave from TIR and a plane wave exponentially decaying due to absorption? (Supposing no knowledge about the media.)

Normally don't want optical material to absorb Important exception: mirrors light doesn't penetrate medium not much loss

How to apply Fresnel relations? Typically n_i , θ_i real n_t complex Same equations apply

• Snell's law: $\sin \theta_t = \frac{n_i}{n_t} \sin \theta_i$

(so θ_t complex)

• Use
$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t}$$
 as before

 \bullet Plug into equations for $r_{\perp}\text{, }r_{\parallel}$ Get complex result

Hard to do by hand; easy on computer

23

Consider a very good absorber $\alpha \to \infty$

Then
$$n_i \sin \theta_i = \left(n_t + i \frac{\alpha}{2k_0}\right) \sin \theta_t$$

means $\theta_t \to 0$
and $r_\perp = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$
 $\rightarrow \frac{n_i \cos \theta_i - n_t - i\alpha/2k_0}{n_i \cos \theta_i + n_t + i\alpha/2k_0}$
 $\rightarrow -1$

```
Similarly r_{||} \rightarrow 1
```

So perfect absorber = perfect reflector

```
To make a true absorber:
need moderate \alpha + porous surface
reflected waves bounce many times
Example: soot ( = carbon dust)
```

Use high- α material for mirror

25

Highest α : metals

Homework problem 5 from assignment 1:

In conductive medium get current $\mathbf{J}=\sigma\mathbf{E}$ $\sigma=\text{ conductivity}$

Got
$$k = \sqrt{\epsilon \mu_0 \omega^2 + i \omega \mu_0 \sigma}$$

Rewrite

$$k = k_0 \sqrt{\frac{\epsilon}{\epsilon_0} + i \frac{\sigma}{\epsilon_0 \omega}}$$

Good conductor: silver $\sigma \approx 6 \times 10^7 \ (\Omega \ {\rm m})^{-1} \ \ ({\rm at \ dc})$

If $\lambda = 500$ nm and $\epsilon \approx \epsilon_0$ $\frac{\sigma}{\epsilon_0 \omega} \approx 2000$

So
$$k \approx k_0 \sqrt{2000i}$$

 $\approx 45k_0 \frac{1+i}{\sqrt{2}} = 30k_0(1+i)$

Then expect $n \approx \alpha/2k_0 \approx 30$

Actually, not that good at optical freqs find n = 0.3 and $\alpha/2k_0 = 4$ Still get $R \approx 0.95$ across visible

Practical notes on mirrors

- Typical metals: Silver: R ≈ 0.95 in visible, NIR

 oxidizes quickly in air
 Gold: R ≈ 0.95 in NIR
 doesn't oxidize

 Aluminum: R ≈ 0.85 in visible, NIR

 oxidizes but easy to protect (SiO)

 Metals don't have Brewster angle

 typically dip in R_{||}, but not to zero

 Wave penetrates fraction of λ
 - typical 50-100 nm

Get better mirrors using dielectric layers

- discuss theory later
- can get R = 0.99 easily, 0.99999 with effort
- more expensive than metal

Could use TIR:

Drawbacks:

- Reflection losses from first surface
- Beam displacement inconvenient
- Limited range of θ_i

Usually use when displacement desired

29

Summary

- Get TIR with internal incidence, $\theta_i > \theta_c$
- Perfect reflection, with phase shift
- Evanescant wave at surface
- For TIR or absorbing media, Fresnel equations are complex
- \bullet Highly absorbing medium \rightarrow good mirror