
Phys 532 Assignment 10 Due April 9

1. Classical Model for Nonlinear Response: The nonlinear optical response
of a medium can be understood in terms of a simple classical model. Suppose a
medium contains classical particle-like electrons that move in a 1-dimensional poten-
tial
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where V0 is a characteristic atomic energy scale and a is a characteristic atomic length
scale. Assuming each electron has an electric dipole moment −ex, the macroscopic
polarization of the medium will be given by P = −exN for electron density N .
(a) Write out the equation of motion for an electron of mass m in this potential which
is also driven by an electric field E(t) = E0 exp(iωt). What is the resonant frequency
ω0 in the limit of small excursion x?
(b) Assuming a steady-state solution of the form

x(t) = x1e
iωt + x2e

2iωt + x3e
3iωt + . . .

solve for the amplitudes of the first three terms x1, x2, and x3.
(c) For most optical materials, the lowest resonant frequencies are in the ultraviolet,
so we can take ω � ω0. Evaluate the amplitudes in this limit, and find expressions
for the linear susceptability χ and the second and third order nonlinear coefficients,
defined by

P (t) = ε0χE + 2dE2 + 4χ(3)E3

Note that for eE0 � V0/a, the terms in the expression for P decrease in magnitude
as their order increases.

2. Nearly Degenerate Three-Wave Mixing: The fundamental equation for
second-order nonlinear response is

P (t) = 2dE(t)2

for real electric field E and polarization P . (Assume here that the fields can be
treated as scalars.) In class, we showed that for a single applied field oscillating at
frequency ω, the complex amplitude of the polarization component at 2ω is

P (2ω) = dE(ω)2,

but for a applied field containing components at distinct frequencies ω1 and ω2, the
polarization component at ω1 + ω2 is

P (ω1 + ω2) = 2dE(ω1)E(ω2).

Now suppose that the frequencies ω1 and ω2 are nearly identical, with ω1 = ω2 + ε.
Then on time scales t � 1/ε, the frequencies 2ω1, 2ω2, and ω1 + ω2 cannot be
distinguished. Show that the net polarization at these frequencies satisfies P = dE2

for E = E(ω1) + E(ω2), just as would be obtained if ω1 = ω2. This should illustrate
the continuity between the degenerate and non-degenerate cases.



3. SHG in Te: Design a second-harmonic generation experiment in Te using an
input at λ = 10.6 µm. Te is a uniaxial crystal with indices of refraction

λ no ne

5.3 µm 4.856 6.307
10.6 µm 4.794 6.243

It has symmetry class 32, which gives three non-zero second-order coefficients, d11 =
−d12 = −d26 = 5.7 × 10−21 C/V2.

Find the phase-matching angle and decide on the proper beam polarization and
crystal orientation for maximum power output at 5.3 µm. Find the effective value of
the nonlinear coupling parameter, d′ (including angle effects).

4. Properties of BBO: Look up the properties of the nonlinear crystal β-
BaB2O4, commonly called BBO. Find the range of wavelengths over which it is
transparent, whether it is uniaxial or biaxial, and values for as many of its nonzero
second-order coefficients as you can find (including crystal symmetry effects). Also
find its various indices of refraction at 1064 nm and 532 nm. Cite the sources you
use.
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5. Electro-optic and Nonlinear Optic Coefficients: In Section 19.2-B, Saleh
and Teich explain the relationship between the electro-optic and second-order nonlin-
ear optical coefficients, for scalar (rather than vector) fields. Show that in the vector
case, the relationship is

rijk = −
4ε0dijk

εiiεjj

where εij is the dielectric tensor. Problem 19.6-3 in the text has a hint you may use,
but I’d like you to derive the relation given there.


