Phys 532 – Fundamentals of Photonics Spring 2004
Phys 822 – Lasers and Nonlinear Optics

Instructor: Cass Sackett email: sackett@virginia.edu
Office: Phys 155 Phone: 924-6795

Phys 532/822 is intended to explain how lasers work and to describe some of the optical
techniques used with laser beams. This material is important for many disciplines, and
we may have students from Physics, Engineering, Chemistry, Astronomy, or other
departments, at both the graduate and undergraduate level. It will help for everyone to be
aware of the range of backgrounds present, and to ask questions about unfamiliar material
when necessary.

The division between 532 and 822 is also meant to help handle the variation in
background preparation. Physics graduate students should enroll in 822, and other
students should enroll in 532. Exceptions to this policy should be cleared with me.
Students in 822 will be graded on a separate curve and will also be given some additional
homework problems that rely on physical and mathematical topics outside of those
covered in class.

Class Hours: MWF 10:00 AM, in Physics 210
Office Hours: Wednesday, Thursday 3-4 PM. I’m usually available at other times in my
office or lab (Phys 156) as well, and you are welcome to drop in.

Homework will be due weekly on Fridays.

Webpage: http://galileo.phys.virginia.edu/classes/532.cas8m.spring04
Assignments and solution sets will be posted on the web page.

Text: Saleh and Teich, *Fundamentals of Photonics*

Supplemental texts: (on reserve in Physics Library)
Yariv – *Quantum Electronics* (general photonics, more advanced)
Milonni and Eberly – *Lasers* (more detailed)
Seigman – *Lasers* (good physical explanations, also advanced topics)
Hecht – *Optics* (optics fundamentals)
Boyd – *Nonlinear Optics* (more detailed)

Prerequisites:
Nominally, Phys 531 Optics is a prereq for this class. Nonetheless, students who
have not taken optics should be able to succeed in Phys 532, since we will review results
from optics as required. However, all students will need to be familiar with Maxwell’s
equations, complex algebra, and basic Fourier transform theory.
Topics (book chapters):
Laser Beams – ray matrices, Gaussian beams, optical resonators (1, 3, 9)
Laser Theory – light and matter, optical amplification, laser oscillation (12, 13, 14)
Lasers Survey – solid, liquid, gas, diode, free electron lasers (14)
Modulation Techniques – electro-optic, acousto-optic (18, 20)
Nonlinear Optics – second and third order, phase matching techniques (19)
Fiber optics – fiber modes, fiber communication techniques (8, 22)

Grading:
Homework 50%
 Your lowest homework score will be dropped.
Midterm and final exam 50%
 Your better exam will be weighted 35%, and your worse one 15%.

Exams:
There will be a midterm and a final exam. The midterm will be take-home, and will be held over the week of March 1-5. The final will be open book, and held in class on Friday, April 30 from 9 AM to noon.