Instructions:

This is an in-class, open-books & notes exam that must be completed during the allowed 3 hour period.

The exam consist of 4 problems, each worth 10 points. For all problems, partial credit will be given, so be sure to show your work and explain your reasoning when appropriate.

- 1. Suppose an argon ion laser is oscillating at a wavelength of 488 nm. It has a 1-m long cavity filled with gas that supports a Gaussian mode with an approximately uniform beam area of 5×10^{-6} m². The output coupler transmission is 5%, and additional losses amount to 3% per round trip. The laser transition has a spontaneous emission time of 7×10^{-9} s and a homogeneously broadened linewidth $\Delta \nu = 3$ GHz. If the laser's output power is 200 mW, what is the *saturated* gain coefficient γ for the medium?
- 2. Suppose a uniaxial electro-optic material has nonzero EO coefficients $r_{13} = r_{41} = r_{43}$. Design a phase modulator using this material: draw a clear picture showing a possible orientation of the x, y, and z crystal axes, the orientation of the light polarization, and the direction of the applied electric field.
- 3. Is it possible to use the d_{11} , d_{22} , or d_{33} nonlinear optical coefficients for second harmonic generation in a critically phase matched uniaxial crystal? For each element, if you think the answer is no, explain the problem. If you think the answer is yes, draw a sketch showing an example setup. (The sketch should show the crystal axes and the polarization of all the beams involved.)
- 4. Consider a uniaxial medium having anomalous dispersion, so that $dn/d\omega < 0$. If it has indices of refraction $n_o(\omega) = 2.0$, $n_e(\omega) = 2.5$ and $n_o(2\omega) = 1.9$, $n_e(2\omega) = 2.3$, what is the phase matching angle for second harmonic generation?