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Forth is a language that, for most programmers, is like the back side of
the Moon: they know it is there but have never laid eyes on it. Yet Forth
is mature (about as old as Lisp or C); ubiquitous in everyday applications
such as automated tellers, package tracking, airline reservations, telephone
switching systems, and microcontrollers everywhere; and built into millions
of personal computers and workstations in the guise of IEEE Open Firmware.
The page description language PostScript also has its roots in Forth.

Since Forth is, like the game of Go, simple yet deep, scientists and engi-
neers should be better acquainted with it. This article provides an overview
of the language with emphasis on availability1, ease of use2, structure, read-
ability, and features considered important or essential in modern languages.
I will also discuss execution speed and code size. To compensate for the
omissions imposed by brevity I include an Appendix of Web links to sources
of further information.

Forth is usually considered a language for embedded programming and
control. However it is frequently applied in the less familiar contexts of
robotics, data processing, security systems, music, and number crunching.
Though not often taught in academic settings, Forth is a good pedagogical
language since it o�ers access to all the computer's facilities and few prede-
�ned amenities. A student learns intimately how a heap or linked list works

1Taygeta Scienti�c Inc. posts a large online collection of Forth information, in-
cluding public domain software, and systems for many machines and environments:
http://www.taygeta.com/

2Forth tutorials are available at:
http://Landau1.phys.virginia.edu/classes/551/primer.txt
http://www.softsynth.com/pforth/pf tut.htm
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because he must construct it himself. I use Forth as the main illustration
language in my course, Computational Methods of Physics3, because pro-
gram 
ow is clear, development is rapid, and lessons are reinforced through
immediate feedback.

Forth came to my attention in the mid-1980's, at a time when my main-
stay, Fortran, had let me down. Since it was easy to learn and a great time
saver in program development, I came to prefer it to Fortran or C for vir-
tually all numerical work. For applications such as symbolic manipulation
I have found it to be in a class with Lisp. One reason I chose Forth over
C or Pascal is that it is easily extended to include both data structures and
arithmetic operators for complex arithmetic (or quaternions, or anything else
one might conceive).

The Forth language is both compiled and interpretive, with a simple
grammar: programs consist of sequences of words and numbers, separated
by spaces (blank characters). The words are subroutines that are executed
when named. Since the language is interactive, a program can be typed in
at the terminal; or it can be read from a �le via commands like

FLOAD filename.ext

or

INCLUDE filename.ext

Again, I �nd the root of a transcendental equation by invoking my hybrid
regula falsi solver:

: f1 FDUP FEXP F* 1.0e0 F- ; ok

USE( f1 0e0 2e0 1e-6 )FALSI FS. 5.67143E-1 ok

The �rst line de�nes the function f1(x) = xex � 1; the second line �nds the
root of f1 and displays it to the screen. Of the other arguments, 0e0 and

3http://www.phys.virginia.edu/classes/551/
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2e0 are literal 
oating point numbers delimiting the range of the search, and
1e-6 is the desired precision of the result. The words USE( , )FALSI and
FS. are subroutines that �nd the root and display the result. \ok" is what
the interpreter says if all went well.

Forth is incrementally compiled: each subroutine|such as f1 above|
compiles as it is entered. Since most Forth subroutines can be executed
interactively, we can test a new de�nition as soon as it has been entered,
without writing a separate test program or elaborate sca�olding. This accel-
erates the program development cycle relative to traditional languages like
C or Fortran. My own experience indicates a 10-fold speedup over Fortran;
Forth programmers who are also C-adept claim a similar ratio over develop-
ment in C.

Two key themes underlie Forth's simplicity of structure and grammar.
First, Forth simpli�es communication between subroutines by providing di-
rect access to the cpu stack. Conventional languages like C or Pascal com-
municate via temporary \stack frames" that hold arguments and parame-
ters. A calling program constructs the frame and saves the current state of
the system on it, before transferring control to the subprogram; upon exit
the system state is restored and the frame deconstructed. This elaborate
communication protocol can double or treble the execution time of a short
subroutine. For programs in such languages to reduce signi�cantly the sub-
routine calling overhead, they must reduce correspondingly the number of
subroutines called. That is, languages with signi�cant communication over-
head necessarily encourage programs featuring lengthy, versatile subroutines
that perform several actions. Further speed optimizations are obtained by
\in-lining" functions (rather than treating them as subroutines), \unrolling"
loops, and other hallowed tricks that trade memory usage for execution speed.

Direct access to the stack lets Forth subroutines expect their arguments|if
any|on the stack, and leave their results|if any|on the stack. This leads
naturally to a \reverse-Polish" or \post�x" programming style, in which
arguments precede functions, as with the HP family of RPN calculators. Us-
ing the stack directly to communicate between subprograms eliminates the
stack-frame overhead and encourages programs consisting of small subrou-
tines performing single functions. Program 
ow becomes clearer and debug-
ging simpler. Repeated operations are generally turned into subroutines and
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given their own names. This factoring process, the opposite of in-lining,
shortens source codes and their corresponding executables.

The second key to simplicity is that Forth recognizes only numbers and
subroutine names. That is, operators, compiler directives, control structures,
data structures, commands, functions|in fact any programming constructs
yet conceived|are subroutines that do their jobs when executed. For exam-
ple, a named VARIABLE is a subroutine that places the address of the storage
allocated to it on the stack. We de�ne and test a new VARIABLE via the
input lines

VARIABLE x ok

7 x ! ok

x @ . 7 ok

The �rst line de�nes a variable named x. The second line inputs the string
7 and converts it to an integer (which is pushed on the stack), then executes
x (which puts its own address on the stack). The subroutine ! (pronounced
\store") expects a memory address on top of the stack and a number just
below it. It stores the number to the address, consuming both stack items.
The third line executes the new variable x (putting its address on the stack)
and then executes the subroutine @ (\fetch"), which consumes an address on
the stack and replaces it with the contents of that memory location. The
subroutine \dot" ( . ) consumes the number on top of the stack|in this case,
7|and displays it on the standard output device|in this case the CRT.

Another standard data structure, CONSTANT, is a subroutine that places the
contents of its storage on the stack. We de�ne and test a new CONSTANT by
saying

17 CONSTANT x ok

x . 17 ok

Now I turn to the structure and compilation method of Forth. A Forth
interpreter is a simple endless loop that awaits input as shown below:
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Each incoming item of text, delimited by spaces, is interpreted according to
the following rules:

1. Search the dictionary to see whether it is the name of a previously
de�ned subroutine (a word in Forth parlance, since it is kept in a dic-
tionary).

2. If found, pass its code address (or execution token) to the subroutine
EXECUTE which executes the found subroutine, then issue the message
\ok".

3. If not found, the subroutine NUMBER tries to convert the text to an
integer (in the current base), and if successful pushes the result onto
the stack and says \ok". (In a system extended to include 
oating
point operations, NUMBER is modi�ed so it recognizes a 
oating point
number|such as 2e0|converts it appropriately, and pushes it onto
the 
oating point stack. Of course this requires the system to be set
for base-ten arithmetic, since 2e0 is a perfectly acceptable hexadecimal
integer.)

4. If the text cannot be interpreted as a number, issue an error message.

5. Return to the beginning of the loop and await the next item of input.

5



I have been speaking of the interpreter. But what of the compiler? In
most compiled languages the compiler is a separate program that ingests a
�le of source code, links it appropriately to external libraries, and outputs
the executable, as shown schematically in the following �gure:

The user controls some aspects of compilation with \compiler directives"|
commands input with the source �le|but generally cannot extend or modify
the compiler itself without rewriting it completely.

The Forth compiler is part of the interpreter, which actually has two
states, interpret and compile. The system variable STATE is FALSE when the
system is interpreting, TRUE when it is compiling. The state determines what
EXECUTE and NUMBER do: during interpretion both act as described above.
But when the system is in compile mode, EXECUTE records the address of
a routine instead of executing it; and NUMBER, after converting the numeric
text to a number, records it and installs code that will place the number on
the stack during execution of the newly-minted subroutine.

Compilation is most easily explained with an example. We can use Forth
as an interactive RPN calculator, as with the input line

3 4 5 * + . 23 ok

What happened? The interpreter interpreted sequentially the strings 3, 4 and
5 as integers and placed them on the stack (with the most recent, 5, on top).
The subroutine � then multiplied the top two integers (4 and 5), consuming
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them and leaving their product (20) on the stack. Next the subroutine +
added the top two integers (now 3 and 20), consuming them and leaving
their sum (23). And �nally, the subroutine \dot" ( . ) printed the top integer
on the stack to the display. Having executed this sequence of operations
successfully without running into unde�ned text, the interpreter said \ok".

Suppose the sequence * + appeared many times in a program. It might
be useful to de�ne a distinct subroutine that does both4:

: *+ * + ; ok

We call this compilation. A new subroutine de�nition begins with \colon" ( : )
which is itself a subroutine. Colon interprets the �rst piece of text following
it in the input stream as the name of a new subroutine, creating a new entry
(under that name) in the dictionary. Colon then switches the interpreter
into the compile mode. In this state, a word located in the dictionary is
not executed: instead the address of its code is copied into a list (that is,
compiled) in the body of the new subroutine. (A literal number would be
copied into the same list, along with the address of a special piece of code|
LITERAL |that places the number on the stack when the new subroutine is
executed.) In this example, pointers to the code of � and + were compiled.
The terminal semicolon ( ; ) is an IMMEDIATE word that executes even when
the system is in compile mode. Semicolon installs some terminating code,
then switches the system back to interpret mode. The \ok" shows semicolon
encountered no snags. This compilation method is called threading.

Now we test|enter the same three numbers, followed by the newly de�ned
subroutine *+, to see whether it works correctly:

3 4 5 *+ . 23 ok

It gives the correct answer and says \ok", so *+ is now a tested and debugged
subroutine.

The preceding example illustrates several important points:

4. . . for example 1+ increments the integer on top of the stack by 1, replacing the
sequence 1 +
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� Forth does not restrict the characters forming the name of a subroutine.
Good Forth style employs telegraphic names like *+ that suggest what
the subroutine does|one route to programming clarity.

� A Forth subroutine looks and acts just like interpreted Forth: a se-
quence of numeric literals and subroutine names that is executed left
to right.

� A new subroutine compiles as it is entered, therefore can be tested
immediately.

� Testing is simple: subroutines generally expect their arguments on the
stack and leave their results there. Therefore testing consists of placing
appropriate arguments on the stack, then invoking the subroutine. If
it produces the right answer (without unexpected side e�ects) it can
be considered debugged.

� A Forth subroutine, once de�ned, becomes part of the language, on a
par with the routines that came prede�ned with the system. There
is no distinction between \user-de�ned" and \system"|which is why
Forth is so easily (and often!) modi�ed by its users.

� A Forth program consists of subroutine de�nitions, ending with the
subroutine that will actually perform the actions one wants. Thus a
program to solve linear equations looks like

\ ... previous definitions of initialize,

\ triangularize, back_solve and report

: }}solve ( A{{ V{ --)

initialize triangularize back_solve report ;

\ usage:

\ A{{ V{ }}solve

\ A{{ is the matrix and V{ the inhomogeneous term;

\ --both are overwritten.

\ The curly braces in the names are syntactic sugar

\ suggesting matrix manipulations according to the

\ conventions of the Forth Scientific Library project.
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It is hardly surprising that arithmetic operators like + or *|or their 
oat-
ing point equivalents F+ or F*|are subroutines. But how can this be true of
control structures? Conventional compilers handle control structures like IF
...ELSE ...THEN or DO: : :LOOP by parsing them as tokens and making deci-
sions: was it an IF ? If so, install this piece of code, otherwise do something
else, etc. In Forth, on the other hand, control structures are IMMEDIATE

subroutines (that execute during compilation). A subroutine incorporating
control structures might look something like

: +OR- IF + ELSE - THEN ; ok

As we have seen, the colon ( : ) initiates, and the semicolon ( ; ) terminates,
compilation of +OR-. The IMMEDIATE subroutine IF lays down code that will
branch when +OR- executes, and temporarily saves the address of that code
on the stack. Compilation then continues normally (in this case compiling the
subroutine +) until ELSE is reached. This word is also IMMEDIATE, hence ex-
ecutes to resolve the forward reference. It uses the saved address to compute
how far forward the �rst branching code must jump when presented with a
FALSE 
ag, and stores that information within the newly laid down branch-
ing code following IF (that is, branches are implemented by jump-relative
instructions). ELSE then installs code for an unconditional forward jump and
saves the address of this code on the stack. Words following ELSE are com-
piled normally until THEN is reached. This IMMEDIATE word (alias ENDIF in
some Forths) then resolves the second forward reference by computing the
length of the unconditional jump and storing it in its proper cell. The �gure
below shows schematically the source code and beneath it the jumps it in-
stalls (the conditional jump is called 0branch and the unconditional one is
called branch):
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This kind of behavior|computing rather than deciding|is typical of Forth
[1], but quite di�erent from the mechanism of conventional compilers. Test-
ing, we have

3 5 TRUE +OR- . 8 ok \ added

3 5 FALSE +OR- . -2 ok \ subtracted

When the code installed by IF �nds a TRUE 
ag on the stack it does nothing,
thereby allowing the subroutines between it and ELSE to be executed. The
unconditional branch installed by ELSE then causes execution to resume at
the subroutine following THEN. With a FALSE 
ag (as in C, FALSE = 0), how-
ever, the branch skips the words between IF and ELSE, resuming execution
at the �rst word past ELSE. As the diagram makes clear, no code is installed
by THEN so execution continues as though THEN were not there.

Control structures for inde�nite (BEGIN...UNTIL, BEGIN...WHILE...REPEAT)
and de�nite DO...LOOP loops work more-or-less the same way.

Forth is a minimal language, which is why it has been implemented on
so many di�erent kinds of computers. A Forth can be reduced to somewhere
between 20 and 30 routines that must be de�ned in machine language; the
rest can be de�ned in terms of this basic kernel. The ANS Forth Standard5

(1994) lists 133 subroutines in the CORE wordset. This is the number required

5. . . available in various formats including HTML
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for a system to advertise itself as ANS-compliant. Whether a vendor wishes
to provide only 20-30 machine-language primitives and de�ne the remainder
in Forth; or to provide optimized code for all 133 required CORE words is
up to her.

The 1994 ANS Standard speci�es 372 subroutines altogether, mandating
standard names and behaviors for integer and 
oating point arithmetic; ex-
ponential, logarithmic, trigonometric and hyperbolic functions; �le access;
exception handling; generic keyboard and display I/O; generic memory man-
agement; and the built-in assembler, if present (most Forths provide one).

When I call Forth minimal, I mean it lacks prede�ned common constructs
like linked lists or C-like structs. However they can be added with little
e�ort, since both commercial Forths and the vast body of public domain
Forth programs (available on the Web) provide Standard implementations of
queues, deques, stacks, heaps, lists, and so on. The Forth Scienti�c Library
is a growing compendium of tested code for all the usual algorithms. In other
words, availability of code examples and libraries is really no hindrance to
someone who wants to use Forth.

Forth provides features lacking in other languages, such as the ability to
specify the current arithmetic base for number conversion. Some algorithms
are more simply expressed in octal or hexadecimal arithmetic, so the ability
to change bases freely is a boon. Standard Forth also permits executing
strings of Forth code as though they were input from the command line
or a �le. This allows straightforward creation of macros, not to mention
(safe) self-modifying code. (The latter is usually considered unsafe practice,
but it can be very useful in arti�cial intelligence programming or language
translation.)

Conspicuously absent from the 1994 ANS Standard are standardized names
and behaviors for complex arithmetic, graphics, GUI construction, or port
access. This is hardly surprising since cross-platform standards for such
things do not exist for any language. (I do not wish to imply that no Forths
provide such features|many do. It is just that they have not yet been
standardized and are not portable.)

One of Forth's nicest features is that it hides nothing. Compiler words
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like : and CODE are comprised of components programmers can use freely.
This makes it easy to modify or extend the compiler, or for that matter, to
de�ne multiple compilers for specialized tasks. Using the dictionary look-up
subroutine \tick" ( ' ) and the subroutine \comma" ( , ) |that stores an
integer on the stack into the next unused memory cell|we can, for example,
hand-construct a jump table for rapid execution of multiple-choice programs
by �nding and storing the execution tokens of the subroutines in the table.
However, if we need many jump tables, it might be better to de�ne a mini-
compiler of jump tables (a constructor, in other words) using components of
Standard Forth, rather than constructing them individually:

: jtab: ( Nmax --) \ starts compilation

CREATE \ make a new dictionary entry

1- , \ store Nmax-1 in its body

; \ for bounds clipping

: >xt_address ( n base_adr -- xt_addr)

DUP @ ( -- n base_adr Nmax-1)

ROT ( -- base_adr Nmax-1 n)

MIN 0 MAX \ bounds-clip for safety

1+ CELLS+ ( -- xt_addr = base + 1_cell + offset)

;

: ;jtab DOES> ( n base_adr --) \ ends compilation

>xt_address

@ EXECUTE \ get token and execute it

; \ appends table lookup & execute code

\ Example:

: Snickers ." It's a Snickers Bar!" ; \ stub for test

\ more stubs

5 jtab: CandyMachine

' Snickers ,

' Payday ,

' M&Ms ,
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' Hershey ,

' AlmondJoy ,

;jtab

3 CandyMachine It's a Hershey Bar! ok

1 CandyMachine It's a Payday! ok

7 CandyMachine It's an Almond Joy! ok

0 CandyMachine It's a Snickers Bar! ok

-1 CandyMachine It's a Snickers Bar! ok

In my own work I have found mini-compilers a very useful and powerful
technique:

� My book [2] describes a compiler of self-executing tables of random
variates from arbitrary distributions|useful in Monte-Carlo simula-
tions.

� When I translate formulas to reverse-Polish notation I must include
comments containing the original formulas (or else I would not be able
to make head or tail of the subroutine six months later!). At some
point I realized that a FORmula TRANslator|in the form of a mini
compiler|would let me eliminate the comment.

� The key to a compact recursive-descent FORmula TRANslator (about
500 lines of code and comments; 727 including white-space lines, doc-
umentation and conditional compilation sections) was the ability to
construct �nite state machines ad libitum. I wrote a mini compiler in
a few lines of code, that compiles the desired FSM (expressed by a
two-dimensional state-transition table) as a self-actuating jump table
[3]. This is such a clear, e�cient and expressive way to program FSMs
that it has been applied to text processing and language translation,
to computer game programming, and to gas/oil pipeline controllers, to
name only applications I know about.

� The FSM mini-compiler was also useful in programs for 
-matrix alge-
bra, as well as for multi-variate function minimization by the simplex
algorithm.
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� Mini compilers are also used (not by me!) for creating optimized native
machine code on the 
y, for example when programming embedded
processors.

I am often asked how Forth stacks up against other languages. This
depends on the criteria of comparison. So far I have tried to show that Forth
is easy to obtain, use and understand. The next section addresses the areas
of execution speed, development time, code size, structure, readability, and
features considered important or essential in modern languages.

Forth codes typically run 3 to 10 times slower than (optimized) C or
Fortran equivalents. In other words, unoptimized Forths, such as the public
domain systems I have been using, are about as fast as unoptimized Lisp or
C++. There are, however, several ways to achieve fast execution in Forth.
Simplest is to invest in an optimizing native code compiler; there are several
available whose execution of numeric-intensive software compares favorably
with good C compilers|that is, about 1.5 to 2� slower than hand-tuned
machine code.

For such specialized applications as linear equations, di�erential equations or
Fourier transforms, commercial packages like MatLab R
 provide optimized
libraries of code subroutines. These libraries can be linked to and called from
Forth programs running under Linux or Windows using standard tools [4].
To use them one must of course know their matrix labelling and subroutine
calling conventions.

Traditionally we optimize Forth for speed by identifying bottleneck subrou-
tines using algorithmic analysis or a pro�ler, then rewriting the bottlenecks
in assembler. Since Forths usually include assemblers, this is an easier route
to take than it would be with other languages. In fact writing and testing
assembly language subroutines is much easier in the Forth environment than
in any other I know of [5] since neither test program nor linking step is re-
quired. A Forth subroutine de�ned in CODE operates exactly the same way
as its high level equivalent. I have recently used this approach in the LU
algorithm for linear equations. The innermost loop of the latter (repeated
twice in the Fortran subroutine LUDCMP [6]) is a good candidate to be fac-
tored out and de�ned as a separate CODE subroutine since it contains the only
instructions executed O (N3) times and therefore dominates the asymptotic
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running time. The instructions in this loop are also simple (two fetches, a
multiplication and a subtraction) so it is easy to hand-code. Further opti-
mization a�ects only the O (N) and O (N2) terms in the running time. In
other words, a single short CODE de�nition lets the Forth version of LU solve
large dense systems at the maximum speed attainable by a non-vectorized
machine.

Most often, however, my goals are development speed and program cor-
rectness rather than execution speed per se. By these criteria Forth beats the
other languages I know. A typical instance was a program I wrote to simu-
late vehicular rollover accidents using realistic forces. It took me less than a
day to write and debug the code, and a couple of hours to add a graphical
display. From prior experience, I do not think I could have achieved this
with Fortran in less than a week. Similarly, having never written any sort
of parser or compiler before, I created a usable recursive-descent FORmula
TRANslator in less than one week.

Since I am a physicist who programs, not a professional programmer, I cannot
speak for the latter group. However, professionals report similar experiences.
For example, the IEEE Open Firmware Speci�cation evolved from Mitch
Bradley's (secret) use of Forth to develop hardware drivers at Sun Computer
Corp. According to Bradley, development went much faster if he prototyped
in Forth and converted to the in-house language afterward. Again, the (pub-
lic domain) Windows-compliant Win32Forth was written by Tom Zimmer
because he found the Microsoft Windows SDK cum C++ too slow to meet
a promised deadline. He delivered his code on time by �rst creating an
object-oriented Forth, then using it to construct Windows programs.

Forth programs tend to be more compact than their equivalents in other
languages. This is true of both source and executables. For example, the 16-
bit DOS-based Forth (that was my mainstay before Windows) had a 32 Kbyte
executable. The Windows compatible Win32Forth has a 52 Kb executable
and a 400 Kb runtime library, which sounds like a lot until one compares it
with Corel WordPerfect R
 6.1 which is 3,775 Kb; or with a \lite" version of
Borland Turbo C++ at 834 Kb. These are summarized in the Table below:
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Program Size (Kb) DLL's (Kb)

HSFORTH 4.2 (16-bit) 32
GForth 0.40 (32-bit DOS) 176
Aztec Forth (32-bit DOS) 133
Win32Forth 3.5 452 288
WinView 410 288
Turbo C++ Lite 834
Ventura Publisher 4.2 997 1017
WordPerfect 6.1 3755 3029

That is, Windows programs tend to be large|Forth-based Windows pro-
grams somewhat smaller. Now when it comes to source code size, the source
for WinView, an extensive Windows editor included with Win32Forth, is 268
Kb. The source for the assembler (for Intel cpu's and fpu's) is about 80 Kb.
And the source for my FORmula TRANslator is 24 Kb (including extensive
comments).

What about readability and maintainance? At one time structured pro-
gramming was a central goal of computer pedagogy. Nicholas Wirth invented
Pascal in reaction to \spaghetti code" produced by students. Wirth aimed
to eliminate line labels and direct jumps (GOTOs), thereby forcing control

ow to be clear and direct and making spaghetti code impossible. Paradox-
ically, Forth is the only truly structured language left in common use today,
although that was not its raison d'être. It contains neither GOTOs nor line
labels. A Forth subroutine has a single entry and a single exit point, and
(usually) performs a single job.

Like every language, Forth can be written obscurely. I have certainly seen
plenty of underdocumented, badly formatted, badly factored code with poorly
named and excessively verbose subroutines. Of course this is true of C, For-
tran or any other language|it is as easy to produce \write-only" code as
to write muddy prose. Standard Forth o�ers the usual remedies: comments,
stack diagrams, sensible and telegraphic naming conventions, proper layout.
Names can help a lot, as in

: }}solve ( A{{ V{ --)

initialize triangularize back_solve report ;
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from the linear equations example. The subroutine names portray the al-
gorithm clearly; more comments would add nothing. Once again, a naming
convention lent transparency to the regula falsi root �nder:

USE( f1 0e0 2e0 1e-6 )FALSI FS.

However Forth also makes available some unusual remedies, that with care
can produce exceptionally clear programs. A self-executing jump-table (com-
piled by the mini compiler jtab: ... ;jtab) looks like a table:

5 jtab: CandyMachine

' Snickers , \ item 0

' Payday ,

' M&Ms ,

' Hershey ,

' AlmondJoy , \ item 4

;jtab

|hardly any further comment or explanation is needed.

One aspect of Forth disconcerting for the newcomer is its lack of safety
features. Some Forths perform rudimentary stack checks during compilation,
but this is by no means mandated by the Standard and is provided at the
discretion of the vendor. Since arrays in Forth are de�ned as needed by the
programmer, they can incorporate bounds checking or not, as desired. The
jump table mini compiler prevented out-of-bounds indexing by clipping|as
good a way as any.

The omission of array bounds checking is not mere hacker machismo, how-
ever. Bugs that cause memory leaks are much rarer in Forth than in C. Forth
errors tend to involve the stack|removing too many items or too few. Obvi-
ously a word that uses the stack incorrectly inside a moderately long loop can
crash with the greatest of ease. A simple discipline of keeping word de�ni-
tions short enough to understand, commenting them thoroughly|especially
their stack e�ects|and testing each word as it is de�ned, eliminates the bulk
of these errors. That is, I do not consider Forth programs inherently unsafe,
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despite the dearth of safety nets. And one professional programmer I know
specializes in safety-critical applications using Forth [7].

A propos of safety, what about debugging? \Serious" languages nowadays
come with an \environment" that includes integrated editing and code de-
bugging of various levels of sophistication. Although many Forths provide
single-stepping code debuggers, and some provide integrated editors, expe-
rienced Forth programmers mostly do without these appurtenances. Again
this has little to do with machismo, but a great deal to do with the way
programs get written. Most subroutines are short enough to be correct the
�rst time. They can be tested as they are entered, and quickly reveal errors,
omissions or oversights. I have needed debuggers only a few times, usually be-
cause I let a subroutine get too verbose. Some languages permit \assertions"
[8] that specify conditions|usually loop invariants|that must be satis�ed
at various points in the program. This is considered a key to guaranteeing
program correctness. Assertions have been implemented in Standard Forth,
but I think more for the challenge than because they were needed. They may
be valuable in a large C program, but in Forth assertions seem like overkill.

Some consider modularity essential in \serious" languages. Languages
that support modularity enable multi-programmer teams to develop di�er-
ent parts of a large code in separate modules, joining them only at the end.
This programming paradigm is doubtless the source of the enormous improve-
ments we have witnessed of late, in the quality, ease of use, and reliability of
commercial applications. ;-)

Well, Forth can be made modular also. One of the most successful commer-
cial Forths for large 16-bit DOS applications [9, 10] was designed around this
concept. In fact, modularity|in whatever strength you need|is relatively
easy to implement in Forth. The weakest form, suitable for most applica-
tions, is based on ANS Forth's support for partitioning the dictionary into
distinct wordlists. Repeated subroutine names are not a problem because
the compilation mechanism can be told which wordlists not to search. Many
Forth programmers habitually distinguish public and private resources by
de�ning the words public and private, that execute appropriate search-
order switches.

Discussions in the comp.lang.* newsgroups often revolve around memory
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management, particularly \garbage collection". As most readers will know,
the need for this arises from dynamic memory allocation within a heap. It
is not obvious how best to de-allocate memory that is no longer needed,
since it can be physically located amidst memory that must be retained;
worse, it is not always easy to determine whether a given chunk is, in fact,
ready for reclamation. Some languages|such as Lisp|are more a�icted
by garbage collection problems than others. In Forth, I am happy to report,
garbage collection is mainly a non-issue. We tend to eschew variables, leaving
temporary items on the stack (or at any rate, on a stack); this space is
reclaimed immediately when a word exits. Memory allocation is directly
under the programmer's control, so de-allocating it can be handled in the
way best suited to the speci�c application.

Because Forth's programming philosophy runs to simple subroutines that
do single tasks, arithmetic operators are not overloaded. The ordinary multi-
plication * is not the same as the 
oating point operator F*. Moreover since
there is no telling what might be on the stack at a given moment, we do
not expect * to recognize when a 
oating point number must be multiplied
by an integer. To simplify some of my programs I once implemented a form
of operator overloading to allow mixed real/complex arithmetic. Since the
decisions take place at run time rather than compile time (late, not early
binding) this slows program execution about 15%.

Forth may be the most portable language in use today. I have yet to hear
of a program written entirely in ANS Forth that fails to perform correctly on
another platform running ANS-compliant Forth. A mostly compliant pro-
gram using a few non-Standard or environmentally-dependent subroutines
generally can be ported successfully with little e�ort. Moreover, few com-
puters cannot boast at least one ANS-compliant Forth.

Finally, there is the matter of the programming \style" that a given lan-
guage encourages and/or supports. Raw Forth can look almost like assembly
language|in fact Forth has often been dismissed as \nothing more than a
high-level assembly language". But Forth's enormous extensibility has al-
lowed it to take on many guises. Lisps, Prologs, BASICs, SmallTalk's and
C's have been written in Forth, sometimes for serious reasons and sometimes
just for fun. Standard Forth provides the tools to construct any linguistic
paradigm one wishes, even object orientation with polymorphism and inheri-
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tance: numerous Forths are object-oriented (but there is as yet no concensus
in the Forth community either that such re�nements are necessary or desir-
able; or, if they are, what the standard interface should be).

Many of my own programs look like the evaluation of arithmetic formulae,
a la Fortran, because I use a FORmula TRANslator. For example, here is
how I translate a short Fortran subroutine [11] to Forth:

SUBROUTINE TRIDAG(A,B,C,R,U,N)

PARAMETER (NMAX=100)

DIMENSION GAM(NMAX),A(N),B(N),

# C(N),R(N),U(N)

IF(B(1).EQ.0.)PAUSE

BET=B(1)

U(1)=R(1)/BET

DO 11 J=2,N

GAM(J)=C(J-1)/BET

BET=B(J)-A(J)*GAM(J)

IF(BET.EQ.0.)PAUSE

U(J)=(R(J)-A(J)*U(J-1))/BET

11 CONTINUE

DO 12 J=N-1,1,-1

U(J)=U(J)-GAM(J+1)*U(J+1)

12 CONTINUE

RETURN

END

include arrays.f

include ftran111.f

100 VALUE Nmax

Nmax long 1 FLOATS 1array a{ \ input array

Nmax long 1 FLOATS 1array b{ \ as 3 vectors

Nmax long 1 FLOATS 1array c{

0 VALUE aa{ 0 VALUE bb{ 0 VALUE cc{ 0 VALUE NN

Nmax long 1 FLOATS 1array r{ \ inhomogeneous term

Nmax long 1 FLOATS 1array L{ \ diagonal

Nmax long 1 FLOATS 1array U{ \ lower subdiagonal

Nmax long 1 FLOATS 1array x{ \ solution vector

: }triangularize ( a{ b{ c{ n --)

TO NN TO cc{ TO bb{ TO aa{

f" bb{0}"

FDUP F0= ABORT" Reduce # of equations by 1"

f" L{0}" F!

f" U{0} = cc{0} / L{0}"

NN 1- 0 DO f" U{I} = cc{I} / L{I}"

f" L{I_1+} = bb{I_1+} - aa{I_1+} * U{I}"

LOOP ;

: }backsolve ( r{ x{ n --)

TO NN TO aa{ TO bb{

f" bb{0} = bb{0} / L{0}"

NN 1 DO f" bb{I} = (bb{I} - a{I}*bb{I_1-}) / L{I}"

LOOP

f" aa{NN_1-} = bb{NN_1-}"

0 NN 2 - DO f" aa{I} = bb{I} - U{I}*aa{I_1+}"

-1 +LOOP ;

\ say: a{ b{ c{ n }triangularize r{ x{ n }backsolve

The Fortran looks terser but this is illusory: it lacks comments and white
space, not to mention a program to use it. The Forth version runs as is.

The urge to use Forth as if it were something else a�icts programmers
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who have begun to appreciate Forth's power, but have not yet abandoned
the habits of their previous language(s). I once attempted to write a full
Fortran-to-Forth translator. However, as I soon discovered, good Fortran
translated literally becomes terrible Forth, rather like Mark Twain's literal
re-translation into English of the French version of \The Celebrated Jumping
Frog" [12]. Having learned my lesson, whenever I am tempted nowadays to
change Forth's innate style, I emulate Bennet Cerf and lie down until the
urge passes.

Appendix: Useful Web sites in the world of Forth

MPE Ltd. (http://www.mpeltd.demon.co.uk/)

FORTH, Inc. (http://www.forth.com/)

Online articles and books of interest:

C.H.Moore and G.C. Leach, FORTH|A Language for Interactive
Computing (http://www.ultratechnology.com/f70c2.html)

Philip J. Koopman, Jr., Stack Computers: the new wave
(http://www.cs.cmu.edu/~koopman/stack computers/index.html)

Journal of Forth Application and Research (peer-reviewed online jour-
nal) (http://dec.bournemouth.ac.uk/forth/index.html)

The FORTH Research Page. Maintained and validated by Dr. Peter
Knaggs (pjk@bcs.org.uk) (http://dec.bournemouth.ac.uk/forth/jfar/index.html)

Phil Burk, Forth Tutorial (http://www.softsynth.com/pforth/pf tut.htm)

Taygeta Scienti�c Incorporated: large online collection of Forth info
(http://www.taygeta.com/)

Forth Interest Group Home Page (http://www.forth.org/)

Bill Muench, eForth: A simple model Forth system
(http://members.aol.com/forth/)

J.V. Noble, Computational Methods of Physics
(http://www.phys.virginia.edu/classes/551/)
Most of the programs alluded to in this article can be found there.
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A Forth in Java (http://world.std.com/~wware/agj/fj.html)
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Figure captions

1. Structure of the Forth interpreter

2. Conventional compilation

3. Jump structure of IF ...ELSE ...THEN
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