
Adventures in the Forth Dimension

Julian V. Noble

Forth is a language that, for most programmers, is like the back side of
the Moon: they know it is there but have never laid eyes on it. Yet Forth
is mature (about as old as Lisp or C); ubiquitous in everyday applications
such as automated tellers, package tracking, airline reservations, telephone
switching systems, and microcontrollers everywhere; and built into millions
of personal computers and workstations in the guise of IEEE Open Firmware.
The page description language PostScript also has its roots in Forth.

Since Forth is, like the game of Go, simple yet deep, scientists and engi-
neers should be better acquainted with it. This article provides an overview
of the language with emphasis on availability1, ease of use2, structure, read-
ability, and features considered important or essential in modern languages.
I will also discuss execution speed and code size. To compensate for the
omissions imposed by brevity I include an Appendix of Web links to sources
of further information.

Forth is usually considered a language for embedded programming and
control. However it is frequently applied in the less familiar contexts of
robotics, data processing, security systems, music, and number crunching.
Though not often taught in academic settings, Forth is a good pedagogical
language since it offers access to all the computer’s facilities and few prede-
fined amenities. A student learns intimately how a heap or linked list works
because he must construct it himself. I use Forth as the main illustration
language in my course, Computational Methods of Physics3, because pro-

1see Taygeta Scientific Inc. in the Appendix

2see Forth tutorials in the Appendix

3http://www.phys.virginia.edu/classes/551/

1

gram flow is clear, development is rapid, and lessons are reinforced through
immediate feedback.

Forth came to my attention in the mid-1980’s, at a time when my main-
stay, Fortran, had let me down. Since it was easy to learn and a great time
saver in program development, I came to prefer it to Fortran or C for virtu-
ally all computational work. For applications such as symbolic manipulation
I have found it to be in a class with Lisp. One reason I chose Forth over
C or Pascal is that it is easily extended to include both data structures and
arithmetic operators for complex arithmetic (or quaternions, or anything else
one might conceive).

The Forth language is simultaneously interpretive and compiled. Its
grammar is simple: programs consist of sequences of words and numbers,
separated by spaces (blank characters). The words are subroutines that are
executed when named. Since Forth is interactive, a program can be typed in
at the terminal; it can also be read from a file via commands like

FLOAD filename.ext or INCLUDE filename.ext

I find the root of the transcendental equation xex − 1 = 0 by typing in the
phrases

: f1 FDUP FEXP F* 1.0e0 F- ; ok

USE(f1 0e0 2e0 1e-6)FALSI FS. 5.67143E-1 ok

The first line defines the function f1(x) = xex − 1; the second line seeks
the root of f1 in the range [0.0, 2.0] with precision 10−6 and displays it to
the screen. The (previously compiled) subroutine USE(passes the function
name,)FALSI finds the root by the hybrid regula falsi algorithm, and FS.

displays the result. “ok” is what the interpreter says if all went well.

Forth is incrementally compiled: each subroutine—such as f1 above—
compiles as it is entered. Since most Forth subroutines can be executed
interactively, we can test a new definition as soon as it has been entered,
without writing a separate test program or elaborate scaffolding. This accel-
erates the program development cycle relative to traditional languages like
C or Fortran. My own experience indicates a 10-fold speedup over Fortran;

2

Forth programmers who are also C-adept claim a similar ratio over develop-
ment in C.

Two key themes underlie Forth’s simplicity of structure and grammar.
First, Forth simplifies communication between subroutines by providing di-
rect access to the cpu stack. Conventional languages like C or Pascal commu-
nicate via temporary “stack frames” that hold arguments and parameters.
A calling program constructs the frame, saves the current state of the sys-
tem and the argument list on it, then transfers control to the subprogram.
Upon exit the system state is restored and the frame deconstructed. This
elaborate protocol can double or treble the execution time of a short sub-
routine. To reduce significantly the subroutine calling overhead, programs
in such languages must reduce the number of subroutines called. That is,
languages with significant communication overhead encourage programs fea-
turing lengthy, versatile subroutines that perform several actions. Further
speed optimizations are obtained by “in-lining” functions (rather than treat-
ing them as subroutines), “unrolling” loops, and other hallowed tricks that
trade memory usage for execution speed.

Forth subroutines expect their arguments on the stack, and leave their
results on the stack as well. This leads naturally to a “reverse-Polish” or
“postfix” programming style, in which arguments precede functions, as with
the HP family of RPN calculators. Using the stack directly to communicate
between subprograms eliminates the stack-frame overhead and encourages
programs consisting of small subroutines performing single functions. Pro-
gram flow becomes clearer and debugging easier. Repeated operations are
generally turned into subroutines and given their own names. This factoring
process, the opposite of in-lining, shortens source codes and their correspond-
ing executables.

The second key to simplicity is that Forth recognizes only numbers and
subroutine names. That is, operators, compiler directives, control struc-
tures, data structures, commands, functions—in short, any programming
constructs yet conceived—are subroutines that do their jobs when executed.
For example, a named VARIABLE is a subroutine that places the address of
the storage allocated to it on the stack. We define and test a new VARIABLE

via the input lines

3

VARIABLE x ok

7 x ! ok

x @ . 7 ok

The first line defines a variable named x. The second line inputs the string
7 and converts it to an integer (which is pushed on the stack), then executes
x (which puts its own address on the stack). The subroutine ! (pronounced
“store”) expects a memory address on top of the stack and a number just
below it. It stores the number to the address, consuming both stack items.
The third line executes the new variable x (putting its address on the stack)
and then executes the subroutine @ (“fetch”), which consumes an address on
the stack and replaces it with the contents of that memory location. The
subroutine “dot” (.) consumes the number on top of the stack—in this
case, 7—and displays it on the standard output device—in this case the
CRT. Similarly, the phrase

17 CONSTANT Seventeen ok

Seventeen . 17 ok

defines (and tests) the subroutine Seventeen that, when executed, puts its
contents (the integer 17) on the stack. This is what we want a CONSTANT to
do.

A Forth interpreter is a simple endless loop that awaits input as shown
in Fig. 1:

4

Each incoming item of text, delimited by spaces, is interpreted as follows:

1. Search the dictionary to see whether it is the name of a previously
defined subroutine (a word in Forth parlance, since it is kept in a dic-
tionary).

2. If found, pass its code address (or execution token) to the subroutine
EXECUTE which executes the found subroutine, then issue the message
“ok”.

3. If not found, the subroutine NUMBER tries to convert the text to an
integer (in the current base), and if successful pushes the result onto
the stack and says “ok”. (In a system extended to include floating
point operations, NUMBER is modified so it recognizes a floating point
number—such as 2e0—converts it appropriately, and pushes it onto
the floating point stack. Of course this requires the system to be set
for base-ten arithmetic, since 2e0 is a perfectly acceptable hexadecimal
integer.)

4. If the text cannot be interpreted as a number, issue an error message.

5. Return to the beginning of the loop and await the next item of input.

Consider the input line

5

3 4 5 * + . 23 ok

What happened? The interpreter interpreted sequentially the strings 3, 4 and
5 as integers and placed them on the stack (the most recent, 5, is on top).
The subroutine ∗ then multiplied the top two integers (4 and 5), consuming
them and leaving their product (20) on the stack. Next the subroutine +
added the top two integers (now 3 and 20), consuming them and leaving their
sum (23). And finally, the subroutine “dot” (.) consumed the top integer
on the stack and printed it to the display. Having executed this sequence of
operations successfully without running into undefined text, the interpreter
said “ok”. That is, the interpreter acts like an RPN calculator.

In most compiled languages the compiler is a standalone program that in-
gests a file of source code, links it appropriately to external libraries, and out-
puts an executable file. The user controls some aspects of compilation with
“compiler directives” and/or “switches” (input with the source file or com-
mand line) but cannot extend or modify the compiler itself without rewrit-
ing it completely. In contrast, the Forth compiler is part of the interpreter.
There are actually two modes, interpret and compile, determined by the cur-
rent value of the system variable STATE. Figure 1 shows what happens with
STATE set to interpret. Setting it to compile modifies the behavior of the
routines EXECUTE and NUMBER: the former records the address of a routine
instead of executing it; whereas NUMBER encapsulates the number with code
that pushes it on the stack when the new subroutine runs.

Compilation in Forth uses a method called threading, that is most easily
explained with an example. Recall the interpretive example above, which
contained the sequence * +. If this sequence appeared many times in a
program it might be useful to define a distinct subroutine that performs
both actions:

: *+ * + ; ok

The subroutine “colon” (:) interprets the next word in the input stream
(in this case, ∗+) as the name of a new subroutine, creates a new dictionary
entry with that name, then switches to compile mode. EXECUTE records (that
is, compiles) pointers to ∗ and + in a list in the body of the new subroutine.

6

The final semicolon installs some terminating code, then switches the system
back to interpret mode. The “ok” shows the process encountered no snags.
We test interactively by entering

3 4 5 *+ . 23 ok

Since we get the correct answer and an “ok”, *+ is now a compiled, tested
and debugged subroutine. This example illustrates several important points:

1. Forth does not restrict the characters forming the name of a subroutine.
Good Forth style employs telegraphic names like *+ that suggest what
the subroutine does—one route to programming clarity.

2. A (compiled) Forth subroutine looks and acts just like interpreted
Forth: a sequence of numeric literals and subroutine names that is
executed left to right.

3. A new subroutine compiles as it is entered, therefore can be tested
immediately.

4. Testing is simple: one places appropriate arguments on the stack, then
invokes the subroutine. If it produces the right answer (without unex-
pected side effects) it can be considered debugged.

5. A Forth subroutine, once defined, becomes part of the language, on a
par with the routines that came predefined with the system. There
is no distinction between “user-defined” and “system”—which is why
Forth is so easily (and often!) modified by its users.

6. A Forth program consists of subroutine definitions, ending with the
subroutine that will actually perform the actions one wants. Thus a
program to solve linear equations looks like

\ ... previous definitions of initialize,

\ triangularize, back_solve and report

: }}solve (A[0] V[0] --) \ solve Ax = V; result in V

initialize triangularize back_solve report ;

7

\ usage: say A{{ V{ }}solve

Conventional compilers are quite complex because they must recognize
control structures like IF...ELSE..ENDIF and decide what machine code to
generate. Forth control structures compile themselves: they are subroutines
that, like the terminating semicolon, always execute (rather than having their
addresses recorded when the system is in compile mode). The phrase

: +OR- IF + ELSE - THEN ; ok

defines a subroutine incorporating control structures. As we have seen, the
colon (:) initiates, and the semicolon (;) terminates, compilation of +OR-.
The routines IF, ELSE and THEN (the latter is what ENDIF is called in Forth)
lay down appropriate branching code. They use system pointers to com-
pute relative addresses to branch to, then insert these addresses back in the
branching code. (It is simpler than it sounds—these subroutines are defined
by only a line or two of Forth.) Testing, we have

3 5 TRUE +OR- . 8 ok \ added

3 5 FALSE +OR- . -2 ok \ subtracted

Control structures for indefinite (BEGIN...UNTIL, BEGIN...WHILE...REPEAT)
and definite (DO...LOOP) loops work more-or-less the same way.

Forth is a minimal language, which is why it has been implemented on so
many different kinds of computers. A Forth can be reduced to somewhere be-
tween 20 and 30 routines that must be defined in machine language; the rest
can be defined in terms of this basic kernel. The 1994 ANS Forth Standard4

lists 133 subroutines in the CORE wordset. This is the number required for a
system to advertise itself as ANS-compliant. The Standard specifies 372 sub-
routines altogether, mandating specific names and behaviors for single- and
double-length integer and floating point arithmetic; exponential, logarith-
mic, trigonometric and hyperbolic functions; file access; exception handling;

4. . . available in various formats including HTML

8

generic keyboard and display I/O; generic memory management; and the
built-in assembler, if provided (most Forths include one).

When I call Forth minimal, I mean it lacks predefined common constructs
like linked lists or C-like structs. However they can be added with little
effort, since both commercial Forths and the vast body of public domain
Forth programs (available on the Web) provide Standard implementations of
arrays, queues, deques, stacks, heaps, lists, and so on. The Forth Scientific
Library is a growing compendium of tested code for all the usual numerical
algorithms. In other words, availability of code examples and libraries is
really no hindrance to someone who wants to use Forth.

Forth provides features lacking in other languages, such as the ability to
specify the current arithmetic base for number conversion. Some algorithms
are more simply expressed in octal or hexadecimal arithmetic, so the ability
to change bases freely is a boon. Standard Forth also permits executing
strings of Forth code as though they were input from the command line
or a file. This allows straightforward creation of macros, not to mention
(safe) self-modifying code. (The latter is usually considered unsafe practice,
but it can be very useful in artificial intelligence programming or language
translation.)

Conspicuously absent from the 1994 ANS Standard are standardized
names and behaviors for complex arithmetic, graphics, GUI construction,
or port access. This is hardly surprising since cross-platform standards for
such things do not exist for any language. (I do not wish to imply that no
Forths provide such features—many do. It is just that they have not yet
been standardized and are not portable.)

One of Forth’s nicest features is that it hides nothing. Compiler words
like : and CODE are comprised of components programmers can use freely to
modify or extend the compiler; or for that matter, to define multiple compil-
ers for specialized tasks. Using the dictionary look-up subroutine “tick” (’)
and the subroutine “comma” (,) that stores an integer on the stack into
the next unused memory cell we can, for example, construct jump tables
for rapid execution of multiple-choice programs by finding and storing the
execution tokens of the subroutines comprising the table5.

5Two implementations of this idea can be found in A Beginner’s Guide to Forth at the

9

Defining a specialized mini-compiler can be a useful and powerful tech-
nique. Examples from my own work are:

1. Self-executing tables of random variates from arbitrary distributions—
useful in Monte-Carlo simulations [2].

2. A compact recursive-descent FORmula TRANslator (about 500 lines
of code and comments; 727 including white-space lines, documentation
and conditional compilation sections) to translate formulas to RPN
Forth.

3. A terse compiler (22 lines) of two-dimensional state-transition tables
into the finite state machines they represent [3]. This is such a clear, ef-
ficient and expressive way to program FSMs that it has been applied to
text processing and language translation, to computer game program-
ming, and to gas/oil pipeline controllers, to name only applications I
know about. The FSM mini-compiler simplifies and clarifies programs
with lots of decisions (such as the Boyer-Moore text-search algorithm,
symbolic γ-matrix reduction, or multi-variate function minimization by
the simplex algorithm).

I am often asked how Forth stacks up against other languages. This
depends on the criteria of comparison. Forth is versatile; and easy to ob-
tain, use and understand. To compare it with other languages requires me
to address the areas of execution speed, development time, code size, struc-
ture, readability, and features considered important or essential in modern
languages.

Forth codes typically run 3 to 10 times slower than (optimized) C or
Fortran equivalents. In other words, unoptimized Forths, such as the public
domain systems I have been using6, are about as fast as unoptimized Lisp or
C++. There are, however, several ways to achieve fast execution in Forth.
Simplest is to invest in an optimizing native code compiler; there are several
available whose execution of numeric-intensive software compares favorably

website http://www.phys.virginia.edu/classes/551/
6For the past several years I have used Gforth and Win32Forth. The former runs on

Unix/Linux platforms as well as under MS WindowsTM. Both are ANS compliant.

10

with good C compilers—that is, about 1.5 to 2× slower than hand-tuned
machine code.

For such specialized applications as linear equations, differential equations
or Fourier transforms, commercial packages like MatLabTM provide optimized
libraries of code subroutines. These libraries can be linked to and called from
Forth programs running under Linux or WindowsTM, using standard methods
[4]. To use external libraries one must of course know their matrix labelling
and subroutine calling conventions.

Traditionally we optimize Forth for speed by identifying bottleneck sub-
routines using algorithmic analysis or a profiler, then rewriting the bottle-
necks in assembler. Since Forths usually include assemblers, this is an easier
route to take than it would be with other languages. In fact writing and test-
ing assembly language subroutines is much easier in the Forth environment
than in any other I know of [5] since neither test program nor linking step
is required. A Forth subroutine defined in CODE is used the same way as its
high level equivalent. For example, the innermost loop of the LU algorithm
for linear equations (repeated twice in the Fortran subroutine LUDCMP [6]) is a
good candidate to be factored out and defined as a separate CODE subroutine.
The instructions it contains are the only ones executed O (N3) times; this
loop therefore dominates the asymptotic running time. These instructions
are so simple (two fetches, a multiplication and a subtraction) it is easy to
hand-code. Further optimization affects only those instructions executed N2

times or fewer. Hence with one CODE definition the Forth version of LU solves
large dense systems at the maximum speed attainable by a non-vectorized
machine.

Most often, however, my goals are development speed and program cor-
rectness rather than execution speed per se. By these criteria Forth beats the
other languages I know. A typical instance was a program I wrote to simu-
late vehicular rollover accidents using realistic forces. It took me less than a
day to write and debug the code, and a couple of hours to add a graphical
display. From prior experience, I do not think I could have achieved this
with Fortran in less than a week. Similarly, having never written any sort
of parser or compiler before, I created a usable recursive-descent FORmula
TRANslator in less than one week.

11

Since I am a physicist who programs, not a professional programmer,
I cannot speak for the latter group. However, professionals report similar
experiences. For example, the IEEE Open Firmware Specification evolved
from Mitch Bradley’s (secret) use of Forth to develop hardware drivers at
Sun Computer Corp. According to Bradley, development went much faster
if he prototyped in Forth and converted to the in-house language afterward.
Again, the (public domain) WindowsTM-compliant Win32Forth was written
by Tom Zimmer because he found the Microsoft WindowsTM SDK cum C++
too slow to meet a promised deadline. He delivered his code on time by first
creating an object-oriented Forth, then using it to construct WindowsTM

programs.

Forth programs tend to be more compact than their equivalents in other
languages. This is true of both source and executables. For example, the
16-bit DOS-based Forth (that was my mainstay before WindowsTM) had a
32 Kbyte executable. The WindowsTM compatible Win32Forth has a 52 Kb
executable and a 400 Kb runtime library, which sounds like a lot until one
compares it with other WindowsTM-based PC applications (see table below):

Program Size (Kb) DLL’s (Kb)

HSFORTH 4.2 (16-bit DOS) 32
GForth 0.40 (32-bit DOS) 176
Aztec Forth (32-bit DOS) 133
Win32Forth 3.5 452 288
WinView 410 288
Turbo C++ Lite 834
Ventura Publisher 4.2 997 1017
WordPerfect 6.1 3755 3029

When it comes to source code size, the source for WinView, an extensive
WindowsTM editor included with Win32Forth, is 268 Kb. The source for the
assembler (for Intel cpu’s and fpu’s) is about 80 Kb. And the source for my
FORmula TRANslator is 24 Kb (including extensive comments).

What about readability and maintainance? At one time structured pro-
gramming was a central goal of computer pedagogy. Nicholas Wirth invented
Pascal in reaction to “spaghetti code” produced by students. Wirth aimed
to eliminate line labels and direct jumps (GOTOs), thereby forcing control

12

flow to be clear and direct and making spaghetti code impossible. Paradox-
ically, Forth is the only truly structured language left in common use today,
although that was not its raison d’être. It contains neither GOTOs nor line
labels. A Forth subroutine has a single entry and a single exit point, and
(usually) performs a single job.

Like every language, Forth can be written obscurely. I have certainly
seen plenty of underdocumented, badly formatted, badly factored code with
poorly named and excessively verbose subroutines. Of course this is true of
C, Fortran or any other language—it is as easy to produce “write-only” code
as to write muddy prose. Standard Forth offers the usual remedies: com-
ments, stack diagrams, sensible and telegraphic naming conventions, proper
layout. Choosing memorable and descriptive names for subroutines (remem-
ber, everything in Forth is a subroutine, so this includes variables and con-
stants too) can help a lot, as in the linear equations example. The names
initialize, triangularize, backsolve, report portray the algorithm so
clearly that comments add nothing. However Forth also makes available some
unusual remedies, that with care can produce exceptionally clear programs.
A self-executing jump-table (compiled by the mini compiler jtab: ... ;jtab)
looks like a table:

5 long jtab: CandyMachine

| Snickers \ item 0

| Payday \ item 1

| M&Ms \ item 2

| Hershey \ item 3

| AlmondJoy \ item 4

;jtab

—hardly any further comment or explanation is needed.

One aspect of Forth disconcerting for the newcomer is its lack of safety
features. Some Forths perform rudimentary stack checks during compilation,
but this is by no means mandated by the Standard and is provided at the
discretion of the vendor. Since arrays in Forth are defined as needed by the
programmer, they can incorporate bounds checking or not, as desired. The
jump tables compiled by jtab: ... ;jtab prevent out-of-bounds indexing by
clipping, as good a way as any.

13

The omission of array bounds checking is not mere hacker machismo, how-
ever. Bugs that cause memory leaks are much rarer in Forth than in C. Forth
errors tend to involve the stack—removing too many items or too few. Obvi-
ously a word that uses the stack incorrectly inside a moderately long loop can
crash with the greatest of ease. A simple discipline of keeping word defini-
tions short enough to understand, commenting them thoroughly—especially
their stack effects—and testing each word as it is defined, eliminates the bulk
of these errors. That is, I do not consider Forth programs inherently unsafe,
despite the dearth of safety nets. And one professional programmer I know
specializes in safety-critical applications using Forth [7].

A propos of safety, what about debugging? “Serious” languages nowa-
days come with an “environment” that includes integrated editing and code
debugging of various levels of sophistication. Although many Forths provide
single-stepping code debuggers, and some provide integrated editors, expe-
rienced Forth programmers mostly do without these appurtenances. Again
this has little to do with machismo, but a great deal to do with the way
programs get written. Most subroutines are short enough to be correct the
first time. They can be tested as they are entered, and quickly reveal errors,
omissions or oversights. I have needed debuggers only a few times, usually be-
cause I let a subroutine get too verbose. Some languages permit “assertions”
[8] that specify conditions—usually loop invariants—that must be satisfied
at various points in the program. This is considered a key to guaranteeing
program correctness. Assertions have been implemented in Standard Forth,
but I think more for the challenge than because they were needed. They may
be valuable in a large C program, but in Forth assertions seem like overkill.

Some consider modularity essential in “serious” languages. Languages
that support modularity enable multi-programmer teams to develop differ-
ent parts of a large code in separate modules, joining them only at the end.
This programming paradigm is doubtless the source of the enormous improve-
ments we have witnessed of late, in the quality, ease of use, and reliability of
commercial applications. ;-)

Well, Forth can be made modular also. One of the most successful com-
mercial Forths for large 16-bit DOS applications [9, 10] was designed around
this concept. In fact, modularity—in whatever strength you need—is rel-
atively easy to implement in Forth. The weakest form, suitable for most

14

applications, is based on ANS Forth’s support for partitioning the dictionary
into distinct wordlists. Repeated subroutine names (“name-space collisions”)
are not a problem because the compilation mechanism can be told which
wordlists not to search. Many Forth programmers habitually distinguish
public and private resources by defining the words public and private,
that execute appropriate search-order switches.

Discussions in the comp.lang.* newsgroups often revolve around memory
management, particularly “garbage collection”. As most readers will know,
the need for this arises from dynamic memory allocation within a heap. It
is not obvious how best to de-allocate memory that is no longer needed,
since it can be physically located amidst memory that must be retained;
worse, it is not always easy to determine whether a given chunk is, in fact,
ready for reclamation. Some languages—such as Lisp—are more afflicted
by garbage collection problems than others. In Forth, I am happy to report,
garbage collection is mainly a non-issue. We tend to eschew variables, leaving
temporary items on the stack; this space is reclaimed immediately when a
word exits. Memory allocation is directly under the programmer’s control,
so de-allocating it can be handled in the way best suited to the specific
application.

Because Forth’s programming philosophy runs to simple subroutines that
do single tasks, arithmetic operators are not overloaded. The integer multi-
plication * is not the same as the floating point operator F*. Moreover since
there is no telling what might be on the stack at a given moment, we do
not expect * to recognize when a floating point number must be multiplied
by an integer. To simplify some of my programs I once implemented a form
of operator overloading to allow mixed real/complex arithmetic. Since the
decisions take place at run time rather than compile time (late, not early
binding) this slows program execution about 15%.

Forth may be the most portable language in use today, with at least one
version available for almost every current platform (and most obsolete ones
as well). I have yet to hear of a program written entirely in ANS Forth that
fails to perform correctly on another platform running ANS-compliant Forth.
A mostly compliant program using a few non-Standard or environmentally-
dependent subroutines generally can be ported successfully with little effort.

15

Finally, there is the matter of the programming “style” that a given lan-
guage encourages and/or supports. Raw Forth can look almost like assembly
language. In fact Forth has often been dismissed as “nothing more than a
high-level assembly language”. But Forth’s enormous extensibility has al-
lowed it to take on many guises. Lisps, Prologs, BASICs, SmallTalk’s and
C’s have been written in Forth, sometimes for serious reasons and sometimes
just for fun. Standard Forth provides the tools to construct any linguistic
paradigm one wishes, even object orientation with polymorphism and in-
heritance: numerous modern Forths include object-oriented extensions (but
there is as yet no concensus in the Forth community either that such refine-
ments are necessary or desirable; or, if they are, what the standard interface
should be).

Many of my own programs look like the evaluation of arithmetic formulae,
a la Fortran, because I use a FORmula TRANslator (the subroutine f" reads
a string up to a closing " and translates it to Forth on the fly). For example,
here is how I translate a short Fortran subroutine [11] to Forth:

16

SUBROUTINE TRIDAG(A,B,C,R,U,N)

PARAMETER (NMAX=100)

DIMENSION GAM(NMAX),A(N),B(N),

C(N),R(N),U(N)

IF(B(1).EQ.0.)PAUSE

BET=B(1)

U(1)=R(1)/BET

DO 11 J=2,N

GAM(J)=C(J-1)/BET

BET=B(J)-A(J)*GAM(J)

IF(BET.EQ.0.)PAUSE

U(J)=(R(J)-A(J)*U(J-1))/BET

11 CONTINUE

DO 12 J=N-1,1,-1

U(J)=U(J)-GAM(J+1)*U(J+1)

12 CONTINUE

RETURN

END

include arrays.f

include ftran111.f

100 VALUE Nmax

Nmax long 1 FLOATS 1array a{ \ input array

Nmax long 1 FLOATS 1array b{ \ as 3 vectors

Nmax long 1 FLOATS 1array c{

0 VALUE aa{ 0 VALUE bb{ 0 VALUE cc{ 0 VALUE NN

Nmax long 1 FLOATS 1array r{ \ inhomogeneous term

Nmax long 1 FLOATS 1array L{ \ diagonal

Nmax long 1 FLOATS 1array U{ \ lower subdiagonal

Nmax long 1 FLOATS 1array x{ \ solution vector

: }triangularize (a{ b{ c{ n --)

TO NN TO cc{ TO bb{ TO aa{

f" bb{0}"

FDUP F0= ABORT" Reduce # of equations by 1"

f" L{0}" F!

f" U{0} = cc{0} / L{0}"

NN 1- 0 DO f" U{I} = cc{I} / L{I}"

f" L{I 1+} = bb{I 1+} - aa{I 1+} * U{I}"

LOOP ;

: }backsolve (r{ x{ n --)

TO NN TO aa{ TO bb{

f" bb{0} = bb{0} / L{0}"

NN 1 DO f" bb{I} = (bb{I} - a{I}*bb{I 1-}) / L{I}"

LOOP

f" aa{NN 1-} = bb{NN 1-}"

0 NN 2 - DO f" aa{I} = bb{I} - U{I}*aa{I 1+}"

-1 +LOOP ;

\ say: a{ b{ c{ n }triangularize r{ x{ n }backsolve

The Fortran looks terser but this is illusory: it lacks comments and white
space, not to mention a program to use it. The Forth version runs as is.

The urge to use Forth as if it were something else afflicts programmers
who have begun to appreciate Forth’s power, but have not yet abandoned
the habits of their previous language(s). I once attempted to write a full
Fortran-to-Forth translator. However, as I soon discovered, good Fortran
translated literally becomes terrible Forth, rather like Mark Twain’s literal
re-translation into English, of the French version of “The Celebrated Jump-
ing Frog” [12]. Having learned my lesson, whenever I am tempted nowadays
to change Forth’s innate style, I emulate Bennet Cerf and lie down until the
urge passes.

17

Appendix: Useful Web sites in the world of Forth

MPE Ltd. (http://www.mpeltd.demon.co.uk/)

FORTH, Inc. (http://www.forth.com/)

Online articles and books of interest:

C.H.Moore and G.C. Leach, FORTH—A Language for Interactive
Computing (http://www.ultratechnology.com/f70c2.html)

Philip J. Koopman, Jr., Stack Computers: the new wave
(http://www.cs.cmu.edu/k̃oopman/stack computers/index.html)

Journal of Forth Application and Research (peer-reviewed online jour-
nal) (http://dec.bournemouth.ac.uk/forth/index.html)

The FORTH Research Page. Maintained and validated by Dr. Peter
Knaggs (pjk@bcs.org.uk) (http://dec.bournemouth.ac.uk/forth/jfar/index.html)

Phil Burk, Forth Tutorial (http://www.softsynth.com/pforth/pf tut.htm)

Taygeta Scientific Incorporated: large online collection of Forth info
(http://www.taygeta.com/)

Forth Interest Group Home Page (http://www.forth.org/)

Bill Muench, eForth: A simple model Forth system
(http://members.aol.com/forth/)

J.V. Noble, Computational Methods of Physics
(http://www.phys.virginia.edu/classes/551/)
The programs alluded to in this article can be found there.

A Forth in Java (http://world.std.com/∼wware/agj/fj.html)

References

[1] J.V. Noble, “Avoid decisions” Computers in Physics 5 #4 (1991) 386.

18

[2] J.V. Noble, Scientific Forth: a modern language for scientific computing
(Mechum Banks Publishing, Ivy, VA, 1992) pp. 61-64.

[3] J.V. Noble, “Finite state machines in Forth”, Journal of Forth Applica-
tion and Research 7 http://www.jfar.org/article001.html

[4] http://www.er.ele.tue.nl/emv/frames/EMV hendrix.htm

[5] J.V. Noble, “A call to assembly” Forth Dimensions in press.

[6] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vettering, Numer-
ical Recipes (Cambridge University Press, New York, 1986) p. 35ff.

[7] http://www.amleth.demon.co.uk/

[8] Jon Bentley, Programming pearls (Addison-Wesley Publishing Co.,
Reading, MA, 1989) p. 42.

[9] Microprocessor Engineering, Ltd. (http://www.mpeltd.demon.co.uk/)

[10] Paul Frenger, “Learning Forth with Modular Forth”, ACM/SIGPLAN
Notices 35 #3 (2000) 25.

[11] W.H. Press, et al., ibid., p. 40.

[12] Samuel Clemens, The family Mark Twain (Dorset Press, New York,
1988), pp. 1163ff.

Julian Noble is Professor of Physics at the
Department of Physics
University of Virginia
P.O. Box 400714
Charlottesville, VA 22904-4714

He may be contacted at jvn@virginia.edu .

His interests are eclectic, both in and out of physics.
His teaching philosophy is “no black boxes”.

19

Figure captions

1. Structure of the Forth interpreter

20

