PHYS 551 Computational Methods of Physics 209
Chapter 12 Digital data processing

Digital data processing

So far we have discussed techniques broadly belonging to the field of numerical analysis (“number-
crunching” in the vernacular), for solving problems that arise in physical contexts. Now we turn to
computational methods that arise in the context of experimental technique: data transmission—spe-
cifically, error analysis, prevention and correction; data compression; and data encryption.

Physicists and astronomers often use computers to collect and analyze data from their measuring
instruments. A modern experiment in high energy physics can have event rates as high as

107 - 10%sec. Each such datum may be represented by 8192 bytes/particle (representing, e.g., the
particle’s trajectory through a 256-plane spark chamber of 16X16 wires/plane)—and there may be
an average of 10 particles seen per event. That is, a 3-month run may generate 637 gigabytes of data,
enough to fill 1000 CD-ROM disks, for example; or 100 high-capacity hard drives. Analyzing these
data might take several years using a dedicated 500 MHz computer.

But the vast majority of the data are uninteresting, in the sense that they represent processes that
are well measured and well understood. They are not the reason an experiment costing from two to
ten million dollars was carried out. The “interesting” events might occur as infrequently as once per
ten million uninteresting events, i.e. one (or fewer) per second. The problem the experimentalist
faces is how to winnow all that chaff for the few worthwhile wheat-grains of interesting data, in real
time, so as to reduce at least 100-fold the storage and data-processing requirements of his magnum
opus. That is, he must design an apparatus capable of deciding, in the available time of 10-100
nanoseconds, which of the events are worth storing, and which to ignore.

1. Analog to digital conversion

Although the world may be quantized at heart, many of the measurements we make are analogI in
character. In order to analyze such data by digital methods they must first be represented in digital
form—that is, as streams of O’s and 1’s rather than as continuously varying voltage levels. Often this
conversion must be accomplished at high speed. A typical example is the telemetry of visual
data—images gathered by a satellite or other remote probe. The image on a photographic plate
consists of the deposition of grains of metallic silver at varying densities. The spatial resolution is
limited only by the average size of these grains. Where the grains actually lie on the film is of course
random. Thus an image scanner must measure intensity and spatial location, and digitize that. The
data gathered by an electronic equivalent—an array of photocells, an orthicon tube or a channel
plate—on the other hand, is already digitized to an extent, since the device is configured as a regular

1. The use of the terms “digital” and “analog” to characterize the results of counting experiments (like
g g g eXp
public opinion sampling or radioactive decay rates) vs. measurements of continuously varying quantities
like voltages or angular velocities) dates back to the earliest days of computing and the two types of
g g Y p g yp
computer then in use.

210 Analog to digital conversion

2-dimensional array of pixels. That is, the coordinates of the pixels are integers. However, both the
light levels and the wavelength distributions at each pixel are analog,

How do we go about digitizing analog information? Usually this is done with electronic circuits called
comparators”. They come in several varieties—a simple one is the “flash” comparator, so called
because of its speed. A circuit for one is shown to

the right. The triangular objects are op-amps con- HO0 Y

nected as comparators: they produce an output
signal only if the input voltage exceeds the refer-
ence voltage. Thus the first m inputs to the encoder
chip will be “high” if the input voltage lies in the)"
range

vrcf vref
— <V, < (m+1)—.
2" 2"

The encoder is simply a device that converts the

integers in the range [0,2" —1] to their binary

representation. Thus if we want to be able to 05 K :D—O 1

convert input voltages with a step-size of %5 of the fo 0

input range, 3 output bits are needed. The entire -

1HJ

circuit is called an analog to digital converter, or
ADC. Many other types of ADC have been in-
vented. See Ref. 2 for details.

The speed of the ADC is of some interest when converting a time-varying signal to digital form. For
example sounds in the audio range—speech or music, for example—are typically complex waveforms
with frequency components up to 20 KHz. A basic criterion (Nyquist) states that in order to represent
adequately the input it must be sampled at least
twice that fast, i.e. at intervals less than
0.000025 sec. This is a useful rule of thumb to keep er e Sample points

Signal

Aliasing from inadequate sampling

in mind, as we see from the example to the right: if
we do not sample often enough, a signal of lower
frequency goes through the same set of points, i.e.
information has been lost.

Amplitude

It is perhaps worth noting that conversion of an
analog quantity to digital representation need not

be linear. Taking the example of light— or sound

intensity, it might be more sensibleto digitize the ¢
logarithm rather than the quantity itself. First,

2. See,e.g., P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University Press, New
York, 1989).

PHYS 551 Computational Methods of Physics 21
Chapter 12 Digital data processing

these quantities have a large dynamic range; and second, human senses empirically obey a logarithmic
response rule.

Having discussed how analog signals (that is, most inputs from measuring instruments) can be
digitized, it is time to discuss how the digital information itself must be handled.

2. Information content

To discuss the issues involved in data communication we visualize the entire system as consisting of
input, encoding, transmission, decoding, and output, as shown schematically below:

We shall not concern ourselves here with either the source or the receiver of the data, but rather

Source Encode Decode Recipient

Channel

with the encoder, the communications channel, and the decoder. The key to understanding data
transmission is the information content of the data. According to Claude Shannon, the father of
information theory, a message consisting of a string of symbols contains information

H=-3% plog Bb (1)
K

where py is the frequency (probability of occurrence) of the k’th symbol. Why does the logarithm to
the base 2 appear here? Shannon notes that we can express the data in binary numbers. Hence we
may define the information content as the absolute minimum number of bits that express the message.
For example, suppose we flip a coin thrice—assuming the probabilities of heads and tails are equal,
0.5, there are eight possible, equally likely, outomes, or possible “messages”. Each has probability %5 .
Since p, = %8 for each k, we have

8
H=- Z Yelog, (8) = 8x s x3 = 3.
k=1
In other words, 3 bits is the minimum required to send the message revealing which of the outcomes
took place. This is not exactly a surprise, since we could assign a 1 to a head and a O to a tail and see

directly that 3 bits can describe any 3-toss sequence. Shannon’s formula, Eq. 1 (sometimes called the
“entropy” of a message—guess why?) is more useful for analyzing more complex cases.

5. Data compression

212 Data compression

The information content H estimates the minimum number of bits required to express a given
message, hence it measures how much we can compress a message by some encoding technique. Of
course compression is risky, as we shall see: it reduces message size, but necessarily also reduces the
message’s immunity to transmission errors.

Consider a message in single-case English, ignoring punctuation (lawyers will love this!). English has
26 letters plus a space to separate words, hence we need an alphabet of 27 characters. Based on the
actual frequencies of letters and letter pairs (TH is common, QZ has probability 0) in actual English
spelling, it is found that English can be compressed (for example using the Soundex algorithm) to
about 1 bit per letter. However a message consisting of purely random strings of the 27 characters,
where each character appeared with equal frequency, would have

27
H = Z plog, (17py) = 27x Varxlog27 = 4.76 .
k=1

Because it requires so few bits to transmit English using an efficient compression scheme, compared
with random sequences from the same alphabet, we conclude there is actually much less information
content in a typical English message than the maximum information carrying capacity of a 27-letter
alphabet. Or in other words, the redundency of English is almost 80%. We can see this by examining
a message without vowels:

MST PPL HV LTTL TRBL N RDNG THS MSSG
(MOST PEOFLE HAVE LITTLE TROUBLE IN READING THIS MESSAGE)

Given this fact, why is English—not to mention other human languages—so highly redundant? The
answer must surely be that the redundency has evolved into our use of language to reduce errors in
transmission, errors which at critical moments can be fatal.

Redundancy is our defense against noise (which we can define as random flipping of bits). Thus it will
not do to compress a message maximally, since the loss of even one bit might render it undecipherable.

Consider how we might compress a message using a hypothetical 4-letter alphabet ACTG, with
pA=% pQO=% pT)=p@G)=%.

Now the obvious encoding, shown in the second column of the following table,

Character Obvious Encoding Alternate Encoding
A 00 0
C 01 10
T 10 110
G 11 111

uses 2 bits per character. But an alternate encoding, shown in the third column, uses, on the average,
Yax1 + Vax2 + Wex3 + Wx3 = 1.75

bits per character. Now, interestingly, the Shannon information content, Eq. 1, gives
H = ¥ xlog,(2) + Yaxlog(4) + Y% xlog,(8) + ¥% xlog,(8) = 1.75,

illustrating the principle that H is the minimum number of bits per character.

PHYS 551 Computational Methods of Physics 215
Chapter 12 Digital data processing

This is the essence of Huffmann encoding, as applied to our hypothetical alphabet. An alternative
method is to count O’s and 1’s. That is, suppose we had, for some reason, the string

111111110000

We could write it as 8:4 (that is, 8 1’s followed by 4 0’s). In binary this would be 1000100, almost a
2-fold decrease in the number of bits. This method is called “run-length” encoding. It is most useful
when we might expect long sequences of 1’s and 0’s. But this is exactly the nature of bit-mapped
graphics files.

The compression algorithms currently most favored, when the data channel has high reliability (such
as a disk drive), are based on the Lempel-Ziv algorithms. They use Huffmann encoding (or something
closely related to it) for the short choppy sequences, and switch to run-length encoding for long
sequences of 1’s and O’s.

Here is an important fact: any compression method must make some files longer. If this were not so,
then we could compress arbitrary sequences to zero length! How do we see this? Say T(f) is the
transformed file from input file f. Let L(f) be the length of the file f. Clearly, if

L(T()) < L()

for any input file, then by applying the transformation again we would have

LOT(T())) < L(T()) -

Manifestly, the lower bound of this sequence is 0.

4., Error correcting codes

We can define the capacity of a communications channel as the number of bits per unit time it can

carry, call it C. The rate at which information is actually carried is —— . A major theorem of

dt

information theory states that states that if

dH
de

there exists an encoding scheme (of length N) that makes the probability of a transmission error
smaller than € . That is, for a given € >0, Oa code of length N(€) for which p., < € .

<C

On the other hand, if

dH
dt

it is impossible to find such a code.

> C

Here is an example of an error-correcting code, based on parity checking. Consider datat that can
be expressed as a group of 4 bits (by, by , b, , bs)—that is, 16 possible messages. Let us add 3 more

bits (b , bs , b) to the group:

214 Error correcting codes

df
by = Qbobi b)) = (b Ub) O by
bs = Q(bo by bs)
bs = Q(by b, b3) .
These 3 bits are called parity bits. The operation J means XOR or “exclusive-or”, whose truth table
is

Inputs Output
A B ADOB
1 1 0
1 0 1
0 1 1
0 0 0

Suppose the original message is 1001 but is received as 0001. The parity bits computed from the
original message are 100, but the parity bits computed from the received message are 011. Since all
three of the (computed) bits disagree with what was received (assuming the parity bits were not
corrupted!), we realize that the by was incorrectly transmitted.

Consider the case if 1001 were received as 1101 (that is, the second bit was mis-transmitted): then
the computed parity bits after reception would be 010, and since the first two bits disagree, the error
was in b; of the message. Again, if the message were received as 1011 the computed parity bits would
be 001; the disagreement is in the first and third parity bits so the error was in b,. Finally if 1000 were
received, the computed parity would be 111, disagreeing in the second and third places, so the error
in the mesage would be in bs.

In other words (and this is worth checking), we find the following error table:

error check
bo none agree
by only bg agrees
b, only bs agrees
bs only by agrees

Three check bits only yield a partial check/correction in cases where two of the message bits are
wrong. There are 6 such cases, and we can see easily that there are not 6 unique patterns of agreeing
pairs of parity bits, under the above rule. That is, we do not dare instruct the receiver to simply correct
the presumed wrong bit because there might have been two wrong bits. For example, suppose the
message 1101 were received as 1110. The check bits would disagree at bg, suggesting we flip b;. This
would give the (wrong) message 1010, whose check bits 010 agree with the transmitted ones. In other
words, our only recourse is to note the error and request retransmission of the data.

Suppose we are interested in data that it might be difficult or impossible to retransmit. In this case
we need a stronger encoding scheme that, with high probability, permits the correction of the error(s).

PHYS 551 Computational Methods of Physics 215
Chapter 12 Digital data processing

The (Zn’ TL) Reed-Muller co de3,4maps the Znintegers in the range [0, 2" - 1]onto the rows of asquare 2" % 2" matrix constructed

as follows. Let us define a 2 X 2 matrix

o
ol -1g
and define the direct product of matrices H, and H,

H,

Hn+1 = Hn O Hl

to be the matrix obtained by replacing all the elements of H, with the matrix H; . Then every place
in the matrices H,, so obtained we replace 1 by 0 and —1 by 1. The 8 X 8 matrix so obtained from
Hj is shown below, where the cells containing 0’s are left white and those containing 1’s colored

black. (This sequence defines the Hadamard matrices.)

mn O 1 2 3 4 5 6 7

~N O L bW~ O

Suppose we have data that lie in the range 0-7. These integers would normally require 3 bits to encode.
However, if we encode them by mapping k into the kth row of the matrix, each integer will require
8 bits. However, by doing that we greatly increase its probability of being correctly received. The
crucial point is that, considered as strings of bits, each row in the matrix differs from every other row

in 2! positions, or in the above case, 4 positions. This is called the “Hamming distance” between
two rows. Suppose an error is made in transmission. If it is a 1-bit error, then the 8-bit string will differ
from all the others in the encoding scheme. But it will be closest to 1 of them, and can be identified
with that one. What if 2 bits were corrupted. Then the received string will be equidistant from two
of the rows, and we cannot tell which one it was supposed to be. That is, if the number of corrupted

bits exceeds | (2" = 1)/2], where | | means “the largest integer < the contents”, we cannot correct
the error. The encoding of the Mariner space probe’s video telemetry used n=5; each of the 32 rows
of Hs differs from the others in 16 places, so the Hamming distance is 16, and the maximum number

of bits that can go awry without losing information is 7. If the noise event that corrupts one bit is

3. Richard W. Hamming, Coding and Information Theory (Prentice-Hall, Englewood Cliffs, NJ, 1980).

4. A good exposition is given in A.K. Dewdney, The Turing Omnibus (Computer Science Press, Rockville,
MD, 1989), Ch. 11.

216 Error correcting codes

independent of that corrupting any other; and if the probability of each such eventis € << 1, then
the probability of 7 going bad in a sequence of 32 bits is

_ 32 (32e) 3¢
b7 = 7175 T

To see what this means in practice, the following table gives the probability of 8 or more bits being
corrupted in a 32-bit sequence, for several values of € :

e (1-¢)7 =

bit-flip probability cumulative probability
€ 32
> i)
k=8
0.1 0. 0117
0. 05 0. 00014
0.01 8. 5X10—10

That is, using this error correction technique, only about 1 in 85 data will be corrupted beyond repair
even at the noisiest level. The cost is that instead of the 5 bits necessary to send an integer in the
range 0-31, we must send 32 bits, a ratio of a little more than 6 to 1.

