PHYS 551 Computational Methods of Physics 21
Chapter Representation of functions

Representation of functions

Chapter Contents

1. Evaluating functions

2. Representing measurements
Fast Fourier transform
Gram polynomials

3. Chebyshev approximation

4. Function minimization
Conjugate gradient method
The simplex method
Simulated annealing

One of the most important applications of numerical analysis is the representation of numerical data
in functional form. This includes representations of standard mathematical functions, fitting, smooth-
ing, filtering, interpolating, etc. Related subjects are how to evaluate various functions efficiently,
fitting data as polynomials or Fourier series, and fitting data in such a way as to minimize the average
deviation.

1. Evaluating functions

A program may requirevalues of some mathematical function—sin®, say—for arbitrary values of 6.
The function may be moderately or extremely time-consuming to compute directly. According to
the Intel timings for the 80x87 chip, computing sin takes about eight times longer than a floating
point multiply. In some real-time applications this may be too slow.

There are several ways to speed up the computation of a function. They are all based on compact
representations—either in tabular form or as coefficients of functions that are faster to evaluate. For
example, we might represent sin® by a simple polynomial’

sinB = 0 (0.994108 - 0.1472020) , (1)

TT TU . RTI
accurate to better than 1% over the range — = < 8 < —, that requires but two multiplications and an

2 2
addition to evaluate. This would be 3-4 times faster than calculating sin® on the 80x87 chipz.

1. This comes from the Chebyshev polynomial representation for sin(x). See, e.g., Abramowitz and
Stegun, HMF, §4.3.104.

2. Although the 80x87 already uses a compact representation of the trigonometric functions and is thus
fairly hard to beat, especially if high accuracy is demanded.

22 Evaluating functions

To achieve substantially greater speed requires table lookup. To locate data in an ordered table,
programmers often employ binary search: that is, look at the 8-value halfway down the table and see
if the desired value is greater or less than that. On the average, log, (N) comparisons are required,
where N is the length of the table. For a table with 1% precision, we might need 128 entries, i.e. up
to seven comparisons.

Binary search can be unacceptably slow — is there a faster method? In fact, assuming an ordered
table of equally-spaced abscissae the fastest way to locate the desired x-value is hashing, a method for
computing the address rather than finding it using comparisons. Suppose, as before, we need 1%
accuracy, L.e. a 128-point table with x in the range [0,772]. To look up a value, we multiply x by 256/Tt
[081.5, truncate to an integer and quadruple it to get a (4-byte) floating point address. These
operations take about 1.5-2 fp multiply times, hence the speedup is 4-fold.

The speedup factor does not seem like much, especially for a function such as sin® that is built in to
many numeric co-processors. However, if we needed a function that is considerably slower to evaluate
(for example one requiring evaluation of an integral, or solution of a differential equation) hashed
table lookup with interpolation can be several orders of magnitude faster than direct evaluation.

Once we know the function values at abscissas bracketing the one we need, we must still interpolate
in the table. Several forms of interpolation are commonly employed, depending on the precision
desired, or on the desirability of some degree of smoothing,

Everyone is familiar with linear interpolation,

flo +ph) = (1-p) f. + pfisr +R (2)
where the spacing between successive points (in a uniformly spaced table) is

h =% =%
theremainderis given approximately by

R=h fO)

and & is a point in the interval Hk , kaH. To understand the origin of the remainder we compare

the formula

x0 X
f=d - X0 + 3 + R
o "0
with the first few terms of the Taylor’s series expansion
L2
) =fo + xfx) + 2xf"(x0)
to get
1 '
R =2x(x=h) f"(xo)
and note that

R <5 max Hxtch)| 1| E=gh* 1£®) |-

0<x<h

PHYS 551 Computational Methods of Physics 33
Chapter Representation of functions

More generally we may represent the function in the region containing the points x; , ... , x,, by the

Lagrange interpolation formula

() fi
)= Z) 6)
where
) =[] c=x,).
m#k

We notice this formula goes through each of the points x,,

Higher order Lagrange interpolation is rarely used—it is better to decrease the spacing of the table
(and thereby its demand for storage) if higher precision is required.

A widely employed technique is cubic spline interpolation3. Suppose we have a table of values f, at
abscissas x,. Then if we define
=X Xy T X X —X XX,

Xje+1
Alx) = , B(x)=1-A(x) = =
) X1 — X A%)) X ™ Xkl A%

we may write down by inspection a cubic polynomial,

_ 1 3 2 1 3 2
D) = A fie + By finr + 5o 4%~ AL + (B (B~ B
that is unique (up to two undetermined constants O, and [3,) and passes through the points
a}k , ka Ekﬂ , fkﬂg The undetermined parameters may be used to require that the derivatives of
e fitting polynomials match at the endpoints, i.e.
P'(er1) = D1 i) > P ks) = P k1 () -

From the second of these conditions we see that

B =01 = a1 5

that is, the a’s are the second derivatives of the function. The first condition yields the two-term
recursion relation

1 1 1 fk+2 _fk+1 fk+1 _fk
0 O+ S0 [+ Dy [+ 0 Ay = - .
6 30 [t Bt Do A,

3. Our discussion here will follow that of William H. Press, Saul A. Teukolsky and William T. Vetterling
Numerical Recipes in Fortran : The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

4

Since k runs from 1 to N the above represent N—2 equations in N unknowns, hence two additional
conditions must be imposed in order to get a unique fit. These are usually impsed at the endpoints
and consist either of setting ; = dy;, = 0 (“natural” spline fit) or of giving the first derivatives specific
values at the endpoints (the latter is usually the case in CAD programs). The linear equations can
then be solved (in &N) time) using a standard method suited to tridiagonal matrices. A FORTRAN

Evaluating functions

program for cubic spline fitting is given below:

11

12

SUBROUTI NE SPLI NE(X, Y, N, YP1, YPN, Y2)
PARAMETER (NMAX=100)
DI MENSI ON X(N), Y(N), Y2(N), U(NVAX)
| F (YPL. GT..99E30) THEN

Y2(1) =0.

U(1) =0.
ELSE

Y2(1)=-0.5

U(1) =(3.7(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1)
ENDI F

DO 11 1=2, N 1
SIG=(X(1)-X(1-1))/ (X(1+1)-X(1-1))
P=SI G Y2(I - 1) +2.
Y2(1)=(SIG1.)/P
Uty =(6. *(CY(T+1)-Y(E))/ (X(E+1) - X(1)) - (Y(1) -Y(1-1))
* FOX(EY=X(1-1))) 1 (X(1+1)-X(1-1))-SI G*U(1-1))/ P
CONTI NUE
| F (YPN. GT..99E30) THEN
Q\=0.
UN=O.
ELSE
Q\=0. 5
UN=(3./ (X(N) - X(N-1)) *(YPN- (Y(N) - YCN-1)) 7 (X(N) - X(N-1)))
ENDI F
Y2(N) =(UN- QNFU(N-1)) / (QNFY2(N- 1) +1.)
DO 12 K=N-1,1,-1
Y2(K) =Y2(K) * Y2(K+1) +U(K)
CONTI NUE
RETURN
END

PHYS 551 Computational Methods of Physics 35
Chapter Representation of functions

2. Representing measuretments

We now consider how to represent data by mathematical functions. This can be useful in several
contexts:
* The theoretical form of the function, but with unknown parameters, may be known. One might

like to determine the parameters from the data. For example, one might have a lot of data on pen-
dulums: their periods, masses, dimensions, etc. The period of a pendulum is given, theoretically, by

1/2
= [ZT[L% fEL Mpob E)
0 g] g ’ mstring , O

wherel is thelength of thestring, gtheaood e aion of g avity, andfis somefundion of retios
of typicd lengths, masses and othe factors in theproblem. | n order to determinegaocurady,
onegeng dly fits afundion of dl themessuredfadtors, andtries to minimizeits deviation from
themessured periods. T hat is, onemight try

12 3

o7, O Tn o HMpen U g
ol g .

og& o0 O o O

[l [l

O O

for thenth set of observations, with g a, B, ... theunknown paamete's to be determined.

e Sometimes one knows that a phenomenon is basically smoothly varying; so that the wiggles and
deviations in observations are noise or otherwise uninteresting. How can we filter out the noise
without losing the significant part of the data? Several methods have been developed for this pur-
pose, based on the same principle: the data are represented as a sum of functions from a com-
plete set of functions, with unknown coefficients. That is, if ¢,,(x) are the functions, we say (y,

are the data)

W= Pl ©)
m=0

Such reoresentaions aetheoreticdly possibleunder generd condtions. T hen tofilter wekeep
only afinitesumn, retaningthefirst N (usualy simplest andsmoothest) funations fromtheset.
An exanpleof acompleteset is monomids, §,(X) =x ™. Anothe is sinusoidd (trigonometric
fundtions,

sin(2Timx), cos(2Tinx), 0 <x<1,

used in Fourie-seies rgresentaion. Gram paynomids, dsaussed bdow, comprise athird
useful completeset.

The representation in Eq. 6 is called linear because the unknown coefficients c,, appear to their first
power. Thus, if all the data were to double, we see immediately that the c,,’s would have to be

multiplied by the same factor, 2.

Sometimes, as in the example of the measurement of g above, the unknown parameters appear in
more complicated fashion. The problem of fitting with these more general functional forms is called
nonlinear for obvious reasons. The simplex algorithm is an example of a nonlinear fitting procedure.

515) Representing measurements

We are now going to discuss fitting both linear and nonlinear functions to data. The first and
conceptually simplest of these is the Fourier transform, namely representing a function as a sum of
sines and cosines. Such a representation can be made the basis of digital filter routines.

Fast Fourier transform
What is a Fourier transform? Suppose we have a function that is periodic on the interval 0 < x < 2Tt

f(x +271) =f(x) ;

Then under fairly general conditions the function can be expressed in the form

f(x) =ay + z Eln cos(nx) +b, sin(nx)H (7)
n=1
Another way to write Eq. 7 is
f(x) = Z c e™ @)

In either way of writing, the c, are called Fourier coefficients of the function f(x). Looking at Eq. 8,

we see that the orthogonality of the sinusoidal functions leads to the expression
1 PALS)
& =5n IO f(x) e ™ dx . ©)

Evaluating Eq. 9 numerically requires—for given n—at least 2n points*. Naively, for each n=0 to
N-1 we have to do a sum

IN

c, = Z fk e—ZTﬁnk/N
k=1

which means carrying out 2N* complex multiplications.

The fast Fourier transform (FFT) was discovered by Runge and Konig, rediscovered by Danielson
and Lanczos and re-rediscovered by Cooley and TukeyS. The FFT algorithm can be expressed as three
steps:

To evaluate rapidly the polynomial

4. to prevent aliasing.

5. See, e.g., D.E. Knuth, The Art of Computer Programming, v. 2 (Addison-Wesley Publishing Co., Read-
ing, MA, 1981) p. 642.

PHYS 551 Computational Methods of Physics 37

Chapter Representation of functions
N-1
¢ =Py)=y fi ()"
k=0

we divide it into two polynomials of order N/2, dividing each of those in two, etc. This procedure is
efficient only for N =2V, with v an integer, so this is the case we attack.

How does dividing a polynomial in two help us? If we segregate the odd from the even powers, we
have, symbolically,

Py(w) = Exy(w?) +w Oy (w?) - (10)

Suppose the time to evaluate Py(w) is Ty Then, clearly,

Ty=A+2Ty,, (11)

where A is the time to segregate the coefficients into odd and even, plus the time for 2 multiplications
and a division. The solution of Eq. 11is A(N—-1). That s, it takes O(N) time to evaluate a polynomial.

However, the discreteness of the Fourier transform helps us here. The reason is this: to evaluate the
transform, we have to evaluate Py (w,) for N values of w, . But w’ takes on only N/2 values as n takes

on N values. Thus to evaluate the Fourier transform for all N values of n, we can evaluate the two
polynomials of order N/2 for half as many points.

Suppose we evaluated the polynomials the old-fashioned way: it would take 2(N/2) = N multiplica-

tions to do both, but we need do this only N/2 times, and N more (to combine them) so we have
2

N
ER + N rather than N*. We have gained a factor 2. Obviously it pays to repeat the procedure, dividing

each of the sub-polynomials in two again, until only monomials are left.

Symbolically, the number of multiplications needed to evaluate a polynomial for N (discrete) values
of wis

Iw=NA+21y, (12)

whose solution is

Although the FFT algorithm can be programmed recursively, it almost never is. To see why, imagine
how the coefficients would be re-shuffled by Eq. 10: we work out the case for 16 coefficients,
exhibiting them in the table below, writing only the indices:

36

Representing measurements

Bit-reversal for re-ordering discrete data prior to FFT

Start Step 1
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 1
9 3

10 5
11 7
12 9
13 11
14 13
15 15

Step 2

o ~ O

N

6
10
14

1

5

9
13

3

7
11
15

Step 3

A~ 00 O

15

Binary,

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Binary;

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

The crucial columns are “Start” and “Step 3”. Unfortunately, they are written in decimal notation,
which conceals a fact that becomes glaringly obvious in binary notation. So we re-write them in binary
in the columns Binary, and Binary;—and see that the final order can be obtained from the initial
order simply by reversing the order of the bits, from left to right!

Now, how do we go about evaluating the sub-polynomials to get the answer? First, let us write the
polynomials (for our case N=16) corresponding to taking the (bit-reversed) addresses off the stack in
succession, as shown below.

w(f; +‘W8f15)5
w(fs +‘W8f11)5
w(fs +‘W8f13)g

w'(f +ufy)

O

g
Dw3(a3 + w4a7)D

d

0
qw'(b, + Wzb})

O

Ow'(a; +w'as)0

O
Dwo(bo + Wzbz)

O

w6(fé+w8f14)g) E
Ow”(a; + W4“6)D

w(f, + w® f1o)E O
w(f, +w® f12)% O

Ow’(ag +w'ay)0

‘Wo(fo + W8f8)E

g

OOooOoOOoOooOoooooooooooodad

Co T wey

PHYS 551 Computational Methods of Physics 29
Chapter Representation of functions

We see that wi (for N=16) has only two possible values, 1. Thus we must evaluate not 16x8 terms
like f; + w® fiss » but only 2x8. Similarly, we do not need to evaluate 16x4 terms of form f; + w4)[i+4 ,
but only 4x4, since there are only 4 possible values of wz. Thus the total number of multiplications
is

2x8 +4x4 +8x2 + 16x1 =64 =161og, 16,

as advertised. This is far fewer than 16x16=256, and the ratio improves with N — for example a
1024 point FFT is 100 times faster than a slow FT.

Gram polynomials
Gram polynomials are useful in fitting data by the linear least- squares method. The usual method is
based on the following question: What is the “best” polynomial,

N
NCEDYES (15)
=0

(of order N) that we can use to fit some set of M pairs of data points,

[, O
, k=0, 1,..., M-1
5

(with M > N) where f(x) is measured at M distinct values of the independent variable x ?

The usual answer, found by Gauss, is to minimize the squares of the deviations (at the points x;,) of
the fitting function Py (x) from the data —possibly weighted by the uncertainties of the data. That

is, we want to minimize the statistic

M-l N J .
n[]
X=3 b=y %' (16)
= H a0 H Ok
0 0

with repect to the N+1 parameters Y, .

From the differential calculus we know that a function’s first derivative vanishes at a minimum, hence
we differentiate)(2 with respect to each Y, independently, and set the results equal to zero. This yields

N+1 linear equations in N+1 unknowns:

df
S AunVo = By 770, 1. N (17)

df
where the symbol = means “is defined by”.

40 Representing measurements

We shall develop methods for solving linear equations. Unfortunately, they cannot be applied to

Eq. 17 for N > 9 because the matrix A, approximates a Hilbert matrix,

nm

_ const.
"M pm+l]

a particularly virulent example of an exponentially ill-conditioned matrix. That is, the roundoff error
in solving Eq. 17 grows exponentially with N, and is generally unacceptable.

We can avoid roundoff problems by expanding in polynomials rather than monomials:

M-1 N

‘=S B3 whef a8
k=0 n=0 Ok

The matrix we must invert then becomes

M-1
A=Y Polad bl é (19a)
= k

and the inhomogeneous term is now

M-1 1
B,= paCa) fi =3 (19b)
kZo Xi) Tk Ui

Is there any choice of the polynomials p,(x) that will eliminate the ill-conditioning problem (i.e.
roundoff error)? The best kinds of linear equations are those with nearly diagonal matrices. We note
the sum in Eq. 19a is nearly an integral, if M is large. If we choose the polynomials so they are
orthogonal with respect to the weight function

1
W) =5 85,) 8 ~)
O
where
0(x) = [0, x<0

, x20
then A,,,, will be nearly diagonal, and well-conditioned.

Orthogonal polynomials play an important role in numerical analysis and applied mathematics. They
satisfy orthogonality relations® of the form

6. Polynomials can be thought of as vectors in a space of infinitely many dimensions (“Hilbert” space).
Certain polynomials are like the vectors that point in the (mutually orthogonal) directions in ordinary
3-dimensional space, and so are called orthogonal by analogy.

PHYS 551 Computational Methods of Physics 41

Chapter Representation of functions
[dewp,6,0 =3, = B0 ™" (20
A " m nm DO’ m#n

where the weight function w(x) is positive.

For a given w(x) and interval [A,B], we can construct orthogonal polynomials using the Gram-
Schmidt orthogonalization process.

Denote the integral in Eq. 20 by (p,, , p,,,) to save having to write it many times. We start with
p-1=0,
B -1/2
po(x) = (I dx w(x)) = const.,
A

and assume the polynomials satisfy the 2-term upward recursion relation
pn+1(x) = Bln + an H)n(x) + Cn pn—l(x) (21)

Now apply Eq. 21: assume we have calculated p, and p,_; and want to calculate p, ;. Clearly, the
orthogonality property gives

(pn+l’ pn)z(pn+1’ pn—l):(pn’ pn—l):O,

and the assumed normalization gives
(pn) pn) = 1 *

These relations yields two equations for the three unknowns, a,, b, and c,;:

n “n

a,+b, (,, xp,) =0

Cn+bn (pn’ xpn—l) =O

We express a, and ¢, in terms of b, to get

pn+l(x) = bn Hx - (pn’ X pn)) pn(x) - (pn ’ xpn—l)pn—l(x)% (22)

We determine the remaining parameter b, by again using the normalization condition:

(Pn+1) pn+1) = 1'

In practice, we pretend b, = 1 and evaluate Eq. 22; then we calculate
bn = 6n+1) En+1)_1/2’ (23)

multiply the (un-normalized) p,,; by b, , and continue.

42 Representing measurements

The process of successive orthogonalization guarantees that p, is orthogonal to all polynomials of
lesser degree in the set. Why is this so? By construction, p,,; Op,and p, ;. Isit Op, ,? We need
to ask whether

@n , (x—a,) b, H= 0.

But we know that any polynomial of degree N-1 can be expressed as a linear combination of
independent polynomials of degrees O, 1, ..., N-1. Thus

n—1

(x-a,)p,, = Z My P (%) (24)
(=0

and (by hypothesis) p, O every term of the rhs of Eq. 24, hence it follows (by mathematical induction)
that

O
bt OPny s Pz oo 5

Let us illustrate the process for Legendre polynomials, defined by weight w(x) =1, interval [-1,1]:

_af*
po_g%)
1/2
_ B0
n-gf -
1/2

These are in fact the first three (normalized) Legendre polynomials, as any standard reference will
confirm.

Now we can discuss Gram polynomials. While orthogonal polynomials are usually defined with
respect to an integral as in Eq. 20, we might also define orthogonality in terms of a sum, as in Eq. 19a.
That is, suppose we define the polynomials such that

M-1
_ 01, m=n

L _
kZO pn(xk) pm(xk) O__i - 6nm - EO’ m#n (25)

PHYS 551 Computational Methods of Physics 435
Chapter Representation of functions

Then we can construct the Gram polynomials, calculating the coefficients by the algebraic steps of
the Gram-Schmidt process, except now we evaluate sums rather than integrals. Since p, (x) satisfies

Eq. 25 by construction, the coefficients Y, in our fitting polynomial are simply
M-1

1
yn = pn(xk) fk B (26)

they can be evaluated without solving any coupled linear equations, ill-conditioned or otherwise.
Roundoff error thus becomes irrelevant.

In practice, we would never wish to fit a polynomial of order comparable to the number of data, since
this would include the noise as well as the significant information.

We therefore calculate a statistic called)(2/ (degree of freedom) 7. With M data points and an N'th order
polynomial, there are M-N-1 degrees of freedom. That is, we evaluate Eq. 18 for fixed N, and divide
by M-N-1. We then increase N by 1 and do it again. The value of N to stop at is the one where

2
0'2 - XM,N
MNT NM-N-1

stops decreasing (with N) and begins to increase.

The best thing about the X%,LN statistic is we can increase N without having to do any extra work:

M-1 M-1 N
2
X%/I,N = Z @‘ Z VnPn(Xk)H w = Z () - z (v, 27
k=0 n k=0 n=0

7. Thatis, “chi-squared per degree of freedom”.

44 Chebyshev approximation

3. Chebyshev approximation

The Chebyshev polynomial of degree n is given by

df
T, (x) = cos%'t cos_lx% (28)

and satisfies the recurrence relation

Tn+1(x) = ZXTn(x) - Tn—l(x) , nz1l.

Manifestly,
Ty=1
Tl =X
T,=2% -1

From Eq. 28 it is obvious that HTn(X)H <1.

The polynomial T(x) has N zeros in the interval (=1, +1) , located at

Otk - 5)0
x,((N)=cosE17D, k=1,2,...,n.
o N

Since the Chebyshev polynomials satisfy the discrete orthogonality relation

N DO m#n
Z T, () T, (x) = EN/Z m=n#0 (29)
k=1 DN , m=n=0
(here m, n £ N), the Chebyshev polynomials are in fact the Gram polynomials of the preceding

Section, for the case of equally spaced abscissas x, and equal weights 1/ 0,% .

An arbitrary function f(x) may be expanded in the form
N-1

f) = 300 + 5 @ T (30)
k=1

where

O tie+Hm O G+ d)m
a z fﬂosBiD]]T @osﬂilj]]
" N M o N m

With the above definitions, the approximation is exact at the zeros

DT(k+ O
xk=cosE|7D,kOl , N-1
0 N

of Ty .

PHYS 551 Computational Methods of Physics 45
Chapter Representation of functions

Now for many functions the a,’s decrease rapidly with n. Thus if we truncate the sum in Eq. 30 at

some m < N-1, the error will be dominated by the coefficient a,,,; of the first neglected term. This
is not the average error (in the sense of fitting to minimize)(2) but rather the maximum error since HTmH(x)H <
The virtue of fitting with Chebyshev polynomials is that the error can be distributed over the entire

interval rather than being concentrated at one or another end—as would be the case with a truncated
series expansions.

. -) O g)
As an example, consider’ fitting cosx on the interval 0y 50 We note that the power series
O O
expansion is
- 1 — x_z + ﬁ — x_6 + —
cosx = TR

The graph below plots the cosine function, the first four terms of the series expansion, the first

neglected term (/81 —multiplied by 10° to fit it on the same scale), and the error function of a
3-term Chebyshev fit (see discussion below), on the interval [0, TV'2] .

We note that all the error (represented by the first neglected term, /81 appears at the end of the

interval and is bounded by 9.2x107*. That is, we must evaluate a cubic polynomial (in xz) togeta
precision of about one part in 1000.

There are two ways we might apply the Chebyshev approximation. If the labor of evaluating a cubic
polynomial is acceptable, we can find a better cubic with much smaller error by approximating

x%/8! as a sum of Chebyshev polynomials

8
g _ Ot 2x0
X = (] Cn TZn)
50 2 @ TulD
8
.) , .) 1 ol _ »
then neglecting the Ty term. Since the latter’s coefficient is ———— 5] = 7.18... x10 ", the
128x8! BH

improved cubic has error two orders of magnitude tahn the truncated power series.

Alternatively one might represent the term x%/6! by Chebyshev polynomials, discarding the T term

and achieving thereby the fourth-order representation
cosx = 0.99935 — 0.49524x* + 0.03653 x* (31)

with precision roughly 107 as before—but somewhat faster to calculate.

8. See, e.g., C. Hastings, Jr., Approximations for Digital Computers (Princeton U. Press, Princeton, 1955.)
9. see,e.g., Abramowitz & Stegun, op. cit., p. 76.

40 Function minimization

To illustrate what has been achieved, the dot-dashed line in the preceding figure represents the error

df
E() = Hosx-[9.99935 - 0.49524x* + 0.03653 x‘*%
(multiplied by 1000 to display it on the same scale). This might appear at first blush like magic—we
have found an approximation that is no less precise using a lower order polynomial! But of course,
despite appearances, we have not actually gotten something for nothing—the error is now distributed
uniformly over the interval, whereas previously it was concentrated at one end.

4. Function minimization

Chebyshev approximation
of cosine function

L4r cosx
[o 1—22/2'+x4/4'—26/6!

L3y - - —- 103x(x8/8!)

L2 — — 103xlcosx—a—bx2—cx?l
11}
1.0}
0.9}
0.8}
0.7
0.6
0.5}
0.4}
0.3}
0.2}
0.1

| L L L \' L L L e | j L L L L L L L L |
0.0
-g1mLoO02 04 06 08 10 12 14 16 18 20

Sometimes we must fit data by a function that depends nonlinearly on its parameters. Consider
-1
~ a(x,—X)[]
fi FH+e g (32)

Although the dependence on the parameter F is linear, that on the parameters o and X is decidedly
nonlinear. Several strategies can be used in such cases. One way to handle a problem like fitting Eq. 32
might be to transform the data, to make the dependence on the parameters linear. That is, we
re-express Eq. 32 in the form

logg.;— 1B=a(x -X). (33)
0

PHYS 551 Computational Methods of Physics 47
Chapter Representation of functions

In some cases (for example if the value of F were known in advance rather than having to be
determined from the data themselves) this might be possible, but in Eq. 32 no transformation will
render linear the dependence on all three parameters at once. Nevertheless putting the problem in
the form Eq. 33 might simplify the labor of determining the three parameters, so this avenue ought
to be explored.

Thus we are frequently confronted with having to minimize numerically a complicated function of
several parameters. Let us denote these by 6y, 6,, ..., 8y_;, and denote their possible range of

variation by R. Then we want to find those values of { 8} R that minimize a positive function:

_—
X N 9 = min)(R N (34)
o N-1 7 min Ho N-1

One way to accomplish the minimization uses calculus, via the method of steepest descents. The idea
is to differentiate the function)(Z with respect to each 6}, and to set the resulting N equations equal

to zero, solving for the N 8’s. This is generally a pretty tall order, hence various approximate, iterative
techniques have been developed. The simplest just steps along in 8-space, along the direction of the

local downhill gradient =00)(2, until a minimum is found. Then a new gradient is computed, and a
10

new minimum sought™".
Aside from the labor of computing —[J)(2, steepest descents has two main drawbacks: first, it only
guarantees to find a minimum, not necessarily the absolute minimum—if a function has several local
minima, steepest descents will not necessarily find the lowest. Worse, consider a function that has a
minimum in the form of a steep-sided gulley that winds slowly downhill to a declivity—somewhat
like the channel of a meandering river. A naive steepest descents routine will then spend all its time
bouncing up and down the banks of the gulley, rather than proceeding along its bottom, since the
steepest gradient is always neatly perpendicular to the line of the channel.

Sometimes the function X is so complex that its gradient is too expensive to compute. Can we find
a minimum without evaluating partial derivatives? Several algorithms that do this have been devised.
Here we explore two of them: the simplex method and simulated annealing.

10. This is not by itself very useful. Useful modifications can be found in Press, et al., Numerical Recipes, ibid., p.
301

48 Function minimization

The simplex method
The idea behind the simplex method is to construct a simplex—a set of N+1 distinct and
non- degenerate11 vertices in the N-dimensional B-space. We evaluate the function to be minimized

at each of the vertices, and sort the table of vertices by the size of)(2 at each vertex, the best (smallest

x>) on top, the worst at the bottom. The simplex algorithm then chooses a new point in 6-space
using a strategy that in action somewhat resembles the behavior of an amoeba seeking its food.

A standard FORTRAN subroutine for the simplex method has the disadvantages of being more than

a page long and containing deeply nested control structures. It is thus hard to decipher—the
SUBROUTI NE AMOEBA(P, Y, MP, NP, NDI M FTOL, FUNK, | TER)
C fromPress, et al., "Nunmerical Recipes", p. 292.
PARAMETER (NMAX=20, ALPHA=1. 0, BETA=0. 5, GAMVA=2. 0, | TMAX=500)
DI MENSI ON P(MP, NP), Y(MP), PR(NVAX) , PRR(NMAX) , PBAR(NVAX)
MPTS=NDI M+1
| TER=0
1 I LO=1
I F(Y(1).GT. Y(2)) THEN
I H =1
I NHI =2
ELSE
| HI =2
I NHI =1
ENDI F
DO 11 | =1, MPTS
IF(Y(1).LT. Y(1LO) ILO=I
IF(Y(1).GT. Y(1 H)) THEN
I NHI =I HI
I HI =I
ELSE I F(Y(1).GT. Y(I NH)) THEN
IF(I.NE. ITH) INH =I
ENDI F
11 CONTI NUE
RTOL=2. *ABS(Y(I H) - Y(1LO))/ (ABS(Y(I H))+ABS(Y(ILO)))
| F(RTOL. LT. FTOL) RETURN
I F(1 TER EQ | TMAX) PAUSE ' Anpeba exceedi ng maxi mumiterations.’
| TER=I TER+1
DO 12 J=1, NDI M
PBAR(J) =0.
12 CONTI NUE
DO 14 | =1, MPTS
I F(1. NE. | H') THEN
DO 13 J=1, NDI M
PBAR(J) =PBAR(J) +P(1 , J)
13 CONTI NUE
ENDI F

corresponding flow chart (see below) took some time to construct.

11. “Non-degenerate” means the geometrical object, formed by connecting the N+ 1 vertices with straight
lines, has non-zero N-dimensional volume; for example, if N=2, the simplex is a triangle.

PHYS 551 Computational Methods of Physics
Chapter Representation of functions

14

15

16

17

18

19

21

22

23

24

25

CONTI NUE
DO 15 J=1, NDI M
PBAR(J) =PBAR(J) / NDI M
PR(J) =(1. +ALPHA) * PBAR(J) - ALPHA* P(| HI , J)
CONTI NUE
YPR=FUNK(PR)
I F(YPR LE. Y(1LO)) THEN
DO 16 J=1, NDI M
PRR(J) =GAMVA* PR(J) +(1. - GAMVA) * PBAR(J)
CONTI NUE
YPRR=FUNK(PRR)
I F(YPRR LT. Y(1LO)) THEN
DO 17 J=1, NDI M
P(1HI, J) =PRR(J)

CONTI NUE
Y(I H) =YPRR
ELSE

DO 18 J=1, NDI M
P(1HI, J) =PR(J)

CONTI NUE
Y(I H) =YPR
ENDI F

ELSE | F(YPR GE. Y(| NHI)) THEN
I F(YPR LT. Y(1H)) THEN
DO 19 J=1, NDI M
P(1HI, J) =PR(J)

CONTI NUE
Y(I H) =YPR
ENDI F

DO 21 J=1, NDI M
PRR(J) =BETA* P(| Hl , J) +(1. - BETA) * PBAR(J)
CONTI NUE
YPRR=FUNK(PRR)
I F(YPRR LT. Y(1 H)) THEN
DO 22 J=1, NDI M
P(1HI, J) =PRR(J)

CONTI NUE
Y(I H) =YPRR
ELSE

DO 24 | =1, MPTS
I F(1.NE. | LO) THEN
DO 23 J=1, NDI M
PR(J) =0. 5% (P(1,J)+P(1LO, J))
P(1,J) =PR(J)
CONTI NUE
Y(1) =FUNK(PR)
ENDI F
CONTI NUE
ENDI F
ELSE
DO 25 J=1, NDI M
P(1HI, J) =PR(J)
CONTI NUE
Y(I H) =YPR
ENDI F
0 TO 1
END

49

50 Function minimization

If the FORTRAN is translated directly to a more structured form in, say, Forth (with the various
operations on the simplex factored out into subroutines) the indefinite outer loop (simulated in the

FORTRAN routine by the penultimate GOTO 1 statement) appears as a BEGIN... WHILE...RE-

INITIALI/ZE
CE%} BEGIN not_done? N < MAX_iter AND

e [WHILE
REFLECT
R < BEST?
EXIT DOUBLE .
yes no
R < 7nd WORST? R < WORST?
R < BEST? :
Store x
Store x” Store
HALVE
yes no
e R < WORST?
Store ¥ SHR INK
REPEAT
REPEAT

PEAT loop that is not nearly so long. Nevertheless, the triply nested IF... ELSE... THENs make the
control logic hard to follow.

PHYS 551 Computational Methods of Physics 51
Chapter Representation of functions

)M N M ZE I NI TI ALI ZE
BEG N not_done? N nmax_iter < AND
VWHI LE REFLECT (worst point thru geocenter of the rest to get x')
x' Best _poi nt better?
IF DOUBLE (find a point x'' twice as far from geocenter)
x' ' Best_poi nt better?
IF store x’' ELSE store x’ ENDF
ELSE
X' 2nd_Wor st _poi nt better?
I F store x’
ELSE x' Worst_point better?
IF store x’ ENDF
HALVE (find x’' 0.5 as far from geocenter as REFLECTed pt)

X' Worst _point better?
I F store x'’
ELSE SHRINK (uniformy shrink all points toward Best_point)
ENDI F
ENDI F
ENDI F
REPEAT ;

The simplex algorithm attempts to find a point closer to the minimum than any of the current vertices
of the simplex by moving away from the worst vertex (that with the highest value of the function).
First a new trial point is found by reflecting the worst vertex through the geometrical center of the
other vertices (REFLECT). If that point is better than the best vertex so far, then the algorithm looks
twice as far in the same direction (DOUBLE), the better of the two trial points replacing the former
worst vertex. On the other hand, if the trial point found after REFLECTion is not better than the
best, the algorithm inquires whether it is good enough to keep—that is, is it lower than the
second-highest vertex. If so it replaces the worst vertex. What if it is not better than the second-worst
vertex! Then the routine tests whether it is better than the worst. If so it replaces the worst, but
before ending the outer loop, a new operation is performed: a trial point is found halfway between
the old trial point and the geocenter of the others (HALVE). If this new point is an improvement
over the worst point, it is stored; otherwise a last, desperate attempt to improve things is made: the
lowest vertex is held fixed and the rest of the simplex is shrunk uniformly toward it by some scale
factor.

A complex sequence of operations requiring multiple decisions often may be more clearly represented
by a finite state machine than by a multiply branching binary logic tree. A state machine is the software
analog of certain electromechanical devices' (such as the device that accepts coins in a vending
machine, dispensing goods, making change, and rejecting slugs as necessary). State machines are
often represented by graphs, but for programming purposes a tabular representation is clearer.

The simplex algorithm requires us to determine whether the trial vertex is better than the best;
between the best and the second-worst; between the second-worst and the worst; or worse than the

12. Zvi Kohavi, Switching and Finite Automata Theory, 2nd ed. (McGraw-Hill Publishing Co, New York,
1978).

52

Function minimization

worst! That is, there are four possibilities that determine four courses of action. These can be

represented as in the table below.

state \ input R < best? best<R <2worst? | 2worst <R <worst? worst<R?
reflected|store x’ store x’ store X’ HALVE | HALVE
DOUBLE ~ exit - -
- X2
x 2 store x'’ noop noop - exit | noop - exit
- exit - exit
Y noop — exit |noop - exit |store x’ SHRI NK
- exit - exit
exit

Each cell contains an action (or set of actions) and a state transition to be made after the action is
taken. The column labels are inputs that must exhaust all possibilities, and the row labels represent
the state the machine is in when presented with the input represented by the column label. The state
labelled “exit” is a terminal state, hence its cells contain neither actions nor transitions. The noop
(“do nothing”) action could, if one wished, be replaced by an error handler that would inform us
if—say by hardware failure—the (software) finite state machine has landed in a cell that should be
impossible to reach (these cells are indicated by being tinted).

The chief virtue of the state machine representation of complex logic is the impossibility of producing
“dead” code that is impossible to reach. Moreover the state transition table shows explicitly which
input leads to which action. With such a state machine (called sl i t her below), the) M NI M ZE
subroutine becomes

)M N M ZE I NI TI ALI ZE
BEG N not_done? N nmax_iter < AND
VWH LE REFLECT (worst point thru geocenter of the rest to get x')
reflected >state slither (initialize FSM
BEA N test _x’ (result is a colum nunber, 0-3)
slither (operate FSM
state: slither (get current state)
exit = (test for exit state)
UNTI L
REPEAT ;

which, when accompanied by the code for S| i t her in tabular format, is much easier to follow than
the previous version. Precisely how the state machine is implemented is up to the programmer. For
example, a CASE... ENDCASE control structure would suit the bill. Forth is so versatile it has been
possible to devise a method of compiling the tabular representation above into a subroutine'. This
latter method is essentially self-documenting.

PHYS 551 Computational Methods of Physics 53
Chapter Representation of functions

Simulated annealing
This method has become important in “solving” certain NP-complete programming tasks (this term

means that the problem’s running time scales like ™ with the size of the problem). Although it might
require a very long time to get an exact solution—for example the absolute minimum distance a
travelling salesman must go, to visit N cities in a round trip, or the absolute minimum amount of
witing to connect up circuit elements on a printed circuit board—it is possible to come close to the
true minimum in a much shorter time. Thus if one can be satisfied with an answer that is
within—say—>5% of optimum, the computing time can be quite brief.

Simulated annealing takes its name from thermodynamics. A chunk of glass might have many internal
cracks and dislocations, and thus be in a state of greater energy than a similar chunk that has no
cracks. Typically we heat the glass and slowly cool it to remove the cracks and internal strains.

From a thermodynamic point of view, the probability for the system to be in a state of energy E at

temperature © =kT ;.. 1is

P~

The initial (cracked) state of the glass is a local minimum, although not the absolute minimum, of
the energy. To get into another state—perhaps of lower energy—the system must pass through a
“barrier” or intermediate stae of higher energy. This is very unlikely when the temperature is low.
However, at higher temperatures the glass can with reasonable probability pass through many
intermediate states of higher energy. Its most likely state is, of course, the lowest-energy one. Thus
if the temperature is first raised (and the system allowed to equilibrate) then slowly lowered again,
there is a good chance the sysem will be trapped in a state of lower energy, one in which the cracks
and internal strains are virtually nonexistent.

In other words, to minimize a function f [@,, ..., &, Owe compute (randomly) a trial value of the
vector @ = (0, ..., a,) and compare f(Q),,,) with f(&;;) . If the new value is smaller, then it

replaces the old one. If it is larger, then a random number lying in the interval [0,1] is computed. If
it is less than or equal to the transition probability

P = exp (...~ f.)/©0
Xp N (fnuw fold) 0
the new state is accepted, otherwise it is rejected.

This procedure is repeated many times, and at the same time the “temperature” @ is gradually reduced.
At some point very few transitions are taking place, at which point we decide the process has
converged. To some extent it is useful to provide the feedback and interaction of a human
programmer, since the best schedule for varying the “temperature” is by no means obvious and it is
often a good idea to experiment. One should not feel a great deal of confidence in the result of a

13. See, e.g.,].V. Noble, “Avoid Decisions”, Computers in Physics 5, #4 (1991) 386;].V. Noble, Finite State
Machines in Forth (http://www.jfar.org/articleOO1Lhtml).

54 Function minimization

single run. It is usually valuable to run the program several times with different initial conditions to
see whether it really finds minima close to the optimum.

Simulated annealing, because of its employment of random processes, belongs to the class of
numerical techniques called Monte Carlo methods (after the famous gambling casinos of the
Principality of Monaco). We discuss other Monte Carlo methods in Chapter 4.

