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Integral equations

Many problems of physical interest—for example in the quantum mechanical theory of scattering—
are most simply expressed as integral equations. We restrict our discussion to linear integral equations,
although many interesting equations—especially those arising in Hartree-Fock approximations of
many-body systems, or in dispersion relations—are nonlinear and require more powerful mathemati-
cal techniques.

A linear integral equation has the form

b
fx) = glx) + ?\J'a dy K(x, 5) (o) -

The function K(x y) is called the kernel of the equation. There are several easy cases which we now
examine:

1. Volterra equations

Integral equations whose upper limit is x are known as Volterra equations. There are two possibilities:
If the the upper limit is x and the kernel does not depend on x, the equation is equivalent to an
ordinary differential equation:

fx) = glx) + ?\L d&yKmf) O f () =g () + AKK) fx)

which can be reduced to quadlratures1 by standard methods.

If the upper limit is x and the kernel depends on x as well as vy, it may still be possible to repre-
sent the integral equation as an ordinary differential equation, by differentiating several times
with respect to x. In this case the differential equation will be of higher order than unity, and
will not in general be reducible to quadratures. Such cases can be solved numerically using the
methods of Chapter 5. An example is

f) = 5+ M dy (1439 f)
for which the corresponding differential equation is

=2 +}\B+xZBf+3)\xf.

1. The phrase “reduced to quadratures” means simply that the answer can be expressed as a definite inte-
gral of a known function. At worst we evaluate this integral numerically.
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If the kernel depends on x in a manner that cannot be dissected out into a differential equation
as above, the Volterra equation can nevertheless be solved straightforwardly. It turns out to be
straightforward to show that the iterative solution converges for any value of A . To see this,
consider the n’th term of the iterated integral:

x 3 &t
L= N[ de [ d . [ dE,Klx &) K&, &) - K& &) 8E)

assuming the functions K(x, y) and g(x) are bounded,

IK(x,y)| < M, le®)| < m,
a

<y<«x
we can obtain an upper bound on the integral:
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so the difference between the solution f(x) and the partial sum of the iterated solution is

bounded by
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That is, the iterated solution definitely converges. If the lower limit of the integral is
—say—negative infinity, or if the kernel is not a bounded function, the iterated solution may
nevertheless converge, if the kernel is square-integrable. In any event we shall not be interested
in Volterra equations for which the kernel is not well-behaved.

2. Equations with a difference kernel

If the integral equation has the form

b
flx) = glx) + ?\J’a dy Kix =) f(y)

we say it has a difference kernel. There are only two cases of interest here:
¢ the interval of integration is (g, b) = (~, ) or (0, ®) ;

* the intervalis (¢, b) = (0,x).

In the first case we can Fourier transform to get

flk) = glk) + AK(k) f(k)
which is solved by simple algebra to obtain the Fourier transform of f(x) ; from this we can reconstruct
the function by taking the inverse Fourier transform, i.e. by a quadrature. The only thing we must
watch out for is when A K(k) = 1 for values of k in the interval of integration. These correspond to
eigenvalues of the equation (which are continuously distributed).
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The second case is also straightforward: if

6) = g0) + A [ dvKGc=) 1)

we can Laplace transform both sides. Since the Laplace transform of a convolution integral like that
above is just the product of the Laplace transforms of the factors,

[ ™ [ ayKa=fo) = [ &e™KE [ e )

we can find the Laplace transform of f(x) by algebra and take its inverse to solve the problem. Of
course except in certain especially simple cases’, the inverse Laplace transform must be evaluated by
means of a contour integral—but nevertheless the problem has been reduced to numerical quadra-

ture—solvable in at most OH\]Z E}time}.

3. Linear equations of Fredholm type

The Fredholm integral equation4 has the form

b
flx) = glx) + ?\L dy K(x, y) f(y)

where a and b are definite limits (that is, not dependent on x). It is useful to write this equation more
abstractly, as an operator equation:

f=g+ AKf{.
Clearly the formal solution is

f=(1-AK) g

but this is meaningless unless we can define the resolvent operator

RO = (1 - AK) -

Neumann series
The branch of mathematics called functional analysis deals with various methods for defining the
resolvent—when it is possible. The first method that comes to mind is to iterate the original equation:

2. Thatis, cases where the Laplace transform can be found in a standard table.

3. If we want to know f(x) on a mesh of N points we must evaluate the integral N times; but each evalu-
ation may require a time proportional to N, hence the total grows as N°. In certain cases we can ap-
proximate the inverse Laplace transform by the Fast Fourier algorithm, in which case the time is of or-
der NlogN.

4. See, e.g., F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1958).
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fol®) = ()

b
&) = g + A dyK(xy) f00), n=1,2, ...
This is equivalent to expanding the resolvent in formal geometric series,
RA) = (1 - AK) =1+ AK + XK + ¥E + ...

where by K* we mean the convolution

b
Ki) = [ &Kk HKEY) -

This Neumann expansion only works if there is a bounding criterion on the kernel K such that
IKIl < M < o;
in that case the series converges within the circle (in the complex A—plane)

1
|)\|<M.

Kernels that satisfy the above criterion are called, naturally enough, bounded. Of course not all linear

operators on a vector space are bounded—the (positive) operator =% is unbounded above.

One criterion for boundedness is that the integral
) b b
||I<||Schmidt = J- d}’ |K(X, }’) | |K(y’ X) |
a“a

be finite. This is sometimes called the Schmidt norm of the kernel. A somewhat more useful one is
that

1 ¢ 2 1 1/2
Kl < ﬁgp et KALCR) O(y)ﬁ ﬁljp o), 4 1K@ )| 0(x)@
where 0(x) is any positive function’.

If we apply this to the kernel K(x,y) = |x—y]| ™ on the interval [0, 1] (for which the Schmidt norm
is clearly infinite), with the choice 0 = 1 (certainly a positive function!) we obtain

1
d
Klis max [ =

=2V2 < .
x01[0,1 "0V X_Y|

5. For example, 0 could contain parameters we could vary to reduce the upper bound.
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Equations with compact kernels

Kernels with a finite Schmidt norm belong to a wider class known as compact kernels. The
mathematical definition of compactness is slightly subtle; but one useful criterion for compactness is
that a kernel is compact if any power of it is compact.

Integral equations with compact kernels are fundamental in quantum mechanical collision theory—
the great progress of the past several decades in treating the quantum mechanical three body problem,
for example, derives from new methods of solving such equations numerically.

Here we present three techniques for solving integral equations with compact kernels. The first is
the traditional Fredholm method, which is rarely used in practice because it involves complicated
multi-dimensional numerical quadrature. The solution to the equation

b
fx) = glx) + ?\J’a dy K(x, y) f(y)
can be written

b .
0 = 40 + A dy XD y)

D(N)
where both N(x, y; A) and D(A) may be represented as power series in A, with infinite radii of
convergence. Thus the Fredholm theory represents an existence proof of the solution.

An important fact about the solutions of such integral equations is that either the inhomogeneous
equation has a solution, or else® the homogeneous equation has a solution, but not both at the same
time, except in the unlikely instance that at an eigenvalue,

b
J & NGy D) = 0.

In order for the homogeneous equation to have a solution, the function D(A)—called the Fredholm
determinant—must vanish. That is, the eigenvalues are the zeros of the Fredholm determinant, just
as for a finite system of linear equations the eigenvalues are zeros of the secular equation. Most books
on mathematical methods of physics—for example Riley, et al., Mathematical Methods for Physics and
Engineering (Cambridge U. Press, 1997)—describe how to construct the terms of the series expansion
for the Fredholm resolvent,

N(x, y; N)
D)

so we shall discuss it no further here.

R(x 3 M) = A

6. For a particular value (or values) of A—that is, the eigenvalues of the kernel K.
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A second solution algorithm—good in practice as well as for an existence proof—is the Schmidt
method. We use the fact that a compact kernel can be approximated arbitrarily closely in norm by a
kernel of finite rank. That is,

g N
Ky = Kytxy) = Y @ W),  lim K- Kyll=0.
k=1 N - e
In symbolic terms, then, representing
K = Ky + AK
we have

N

H - AMKH =¢ + AY ¢k%pk»fg
k=1

or

N
f=g-AaKg e+ Ay B - ALK O S
k=1

-1
Since for large enough N we may be sure that |NAK|| < 1, the operator E[ - AAKQ can be

constructed by Neumann series expansion. The preceding equation can then be replaced by a finite

system of linear algebraic equations in the unknowns f;, = El,lk , fH

g a3 Ba-rag o

to solve them we must invert the N x N matrix

ST SRV,

This is perfectly feasible in general; moreover, in many cases of physical interest only a few terms of
the finite-rank approximation are necessary to achieve good accuracy in the solution.

The final method we shall discuss is the direct numerical solution of the equation. That is, we replace
the integration by a finite numerical quadrature formula,

N

flx) = glx) + A z wy, K(x, &) f(&)
k=1

which again yields a finite system of linear algebraic equations:
N

f€) = ¢@) + XY wK(E, &) fE)-

k=1
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In this direct method we have no control over the precision except to increase the number of points
N and see whether the solution seems to be converging (as it must). To interpolate between the
solution points f(§;) we use the formula given above.

It is worth making some concluding remarks about the numerical solution of Fredholm equations.
First, if the kernel is at all singular in the range of integration it is worth iterating it enough times that
the result is non-singular. That is, formally, we can write

f=H+AK+ MK+ )\"‘IK’H% + N'K'g
and invert the (finite) matrix representing I — A" K" rather than that for 1 — AK.
Second, to find the eigenvalues of the problem it is usually most efficient to evaluate the determinant

of the matrix numerically rather than symbolically or as a Fredholm series.’ In the limit as the rank
of Ky becomes large, or equivalently, as the number of points in the numerical quadrature formula

becomes large, the determinant of the matrix approximates the Fredholm determinant.

Finally, Gaussian quadrature rules are widely used in solving integral equations, since, for a given
precision, they require many fewer points and hence much smaller matrices must be inverted. Since

the standard inversion algorithms require time of order N°, using half the number of points means
an eightfold saving in computational effort.

4. Nonlinear integral equations

There is little to say about the numerical solution of nonlinear equations for the simple reason that

the only useful mathematical theory (and existence proof) of their solution pertains to a limited class

that represent compact mappings. That is, a nonlinear mapping of a function is a kernel K(f) for

which K(a f) # o K(f) ; if it is compact, then from every infinite sequence of functions [If; | we can
df

select a subsequence | f’% Jsuch thatx, = K %k%bonverges to a limit. Under these circumstances, the

nonlinear equation

f =g+ AK()
can be solved by iteration, as long as A is sufficiently small in magnitude. The proof is based on the
fixed—point theorem, which states that a compact mapping always possesses a fixed point, i.e. a point
that is mapped into itself. The standard instance of the fixed-point theorm is stirring a teacup: the
surface of the fluid is disarranged from its initial state, with various points being transformed
(nonlinearly, in general!) into other points of the surface. But one point is always transformed into
itself. For further details, see, e.g. Krasnosel’skii’.

7. In fact, all linear equation solvers return the determinant as a matter of course.

M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations (Pergamon Press, Ox-
ford, 1964). Note that a recent search divulged tens to hundreds of titles related to this topic, so this
reference is hardly the last word.



160 Nonlinear integral equations



