PHYS 551 Computational Methods of Physics 75
Chapter 5 Linear equations and matrix inversion

Linear equations and matrix inversion

We are interested in solving equations of the form

N

ZAmnXHZrm, m=1,...,N, (1)

n=1
—more compactly written A x = r— with known coefficient matrix A,,,, and known inhomogeneous
term 1, . We would like to know under what conditions we can find unique values of x, that

simultaneously satisfy the N equations.

The theory of simultaneous linear equations tells us that if not all the r,, ’s are 0, the necessary and

sufficient condition for solvability is that the determinant’ of the matrix A should not be O.
Contrariwise, if det(A) = 0, a solution with x # O can be found only when all the r,’s are 0.

A common way to write such equations explicitly displays the matrix as a square NxN array and the
vectors as columns with N components:

|]111 alz Cllnlj D(l | Eh O
O oo o o O
%4121 ay - pd0_ 20

O O
D.. e e .-.ED E D-.E
%lnl annD %(VID %nlj'
The formal solution of the linear equation is

x=A"r

where A is a square matrix such that

& 00 0 ... 00
0
o 0 e 0
EN 1o,

assuming that such a matrix can be constructed. We now investigate how to do this.

1. The determinant of an N’th-order square matix A—denoted by det{(A) or ||A|| — is a number com-
puted from the elements A,,, by applying rules familiar from linear algebra. These rules define ||A|| re-
cursively in terms of determinants of square submatrices of A.

76 Cramer’s rule

1. Cramer's rule

Crame s ruleis aconstrudivemethodfor solvinglinear equetions by computing deter minants.

Itis compedy impraticad & acompute dgorithm becauseit requires O(N!) stegos tosalveN

lineax equations, wheress pivotd dimination (that welook a bdow) requires O(N3) steps, a
much smdle numbe. Nevethdess Cramea’s ruleis of theoreticd interest because it is a
dosed-form solution.

Consider a square NxN matrix A. Pretend for the moment we know how to compute the determinant
of an (N—1)x(N-1) matrix. The determinant of A is defined to be

df N-1

n=0

where the a,,’s are called co-factors of the matrix elements A, , and are in fact determinants of
appropriately selected (N—1)X(N—1) sub-matrices of A.

The sub-matrices are chosen by striking out of A the n’th column and m’th row (leaving an
(N-1)x(N-1) matrix). To illustrate, consider the 3%3 matrix

0050
A= E 2 4 ﬁ
164

and produce the co-factor of A}, (we attach the factor (=1)™"" to the determinant of the submatrix

when we compute d,,,,):

0 1 2

a = (-1 0 1 0 5
1 3 2 4

2 1 1 6

(In the above determinant the struck-out elements are indicated in red while the retained ones are
shown in boldface.)

A determinant changes sign when any two rows or any two columns are interchanged. Thus, a
determinant with two identical rows or columns vanishes identically. What would happen to Eq. 2
if instead of putting A, in the sum we put Ay, where k #m ? By inspection we realize that this is the
same as evaluating a determinant in which two rows are the same, hence we get zero. Thus Eq. 2 can
be rewritten more generally

N-1

z Aknanmz ”A ” 5km . (3)

n=0

PHYS 551 Computational Methods of Physics 77
Chapter 5 Linear equations and matrix inversion

This feature of determinants lets us solve the linear equation A x = r by construction:

1 N-1
% = Jer(A) % o T - (4)

We see from Eq. 3 that Eq. 4 solves the equation. Equation 4 also makes clear why the solution
cannot be found if det(A) = 0.

A determinant also vanishes when a row is a linear combination of any of the other rows. Suppose row
0 can be written

N-1

agy, = Z B e 5
m=1

that is, the 0’'th equation can be derived from the other N—1 equations, hence it contains no new
information. We do not really have N equations for N unknowns, but at most N—1 equations. The
N unknowns therefore cannot be completely specified, and the determinant tells us this by vanishing.

As an example, we now use Cramer’s rule to evaluate the determinant of

05Q
A=02 4H
0
1 6D
We write
[A [l = Aggagg + Agy ago + Agz a9

_ M2 4@
aOO_[D16|]:|]
1Nl [
3 40

ap = D:DI 6['])((_1)
1Nl [
_m320
aZO_[ﬂll[ﬂ
1Nl [

The determinant of a 1X1 matrix is just the matrix element, hence

ag = 26 +(-1)3 = 8
a = ~(18-4) = -14
ayp = 03-2) =1

and

|A || =18 +00-14) +50 = 13.

76 Pivotal elimination

How many operations does it take to evaluate a determinant? We see that a determinant of order N

requires N determinants of order N—1 to be evaluated, as well as N multiplications and N—1 additions.

If the addition time plus the multiplication time is T, then

Ty=N(t+Ty-y) -

The solution to this is”

: 1
TN:NITZ_, — NlTe.
n=0 "N

In other words, the time required to solve
N linear equations by Cramer’s rule in-
creases so rapidly with N as to render the
method thoroughly impractical.

2. Fivotal elimination

The algorithms we shall use for solving
linear equations involve changing the form
of the matrix to one whose solution is
simpler. Straightforward elimination (as
we were taught in high school algebra)—
that is, solving for one variable in terms of
the rest, substituting that back in the re-
maining equations and repeating—is still a
useful method.

Forty-odd years’ experience of solving lin-

109

108

107

106

105

—
(=)
=

t (units of 1)

101t

100

10-1

Asymptotic time for Cramer’s rule

2 3 4 5 6 7 8 9 10 11 12

ear equations on digital computers has taught us to modify the basic elimination procedure to
minimize the buildup of round-off error and consequent loss of precision®. The necessary additional

step involves pivoting—selecting the largest element in a given column to normalize all the other
elements. This will be clearer with a concrete illustration rather than further description: consider

the 3%3 system of equations:

See R. Sedgewick, Algorithms (Addison-Wesley Publishing Company, Reading, MA 1983).

3. A computer stores a number with finite precision—perhaps 67 decimal places with 32-bit floating-
point numbers. This is enough for many purposes, especially in science and engineering, where the data
are rarely measured to better than 1% relative precision. Suppose, however, that two numbers, about
10~ in magnitude, are multiplied. Their product is of order 10~* and is known to six significant figures.
Now add it to a third number of order unity. The result will be that third number £10~*. Later, a fourth
number—also of order unity—is subtracted from this sum. The result will be a number of order 1074,
but now known only to two significant figures. Matrix arithmetic is full of multiplications and additions.
The lesson is clear—to minimize the (inevitable) loss of precision associated with round-off, we must
try to keep the magnitudes of products and sums as close as possible.

PHYS 551 Computational Methods of Physics 79
Chapter 5 Linear equations and matrix inversion

gosty o
%24@%;%5 (5)

d 16mhs 35

We check that the determinant is # 0; in fact det(A) =13. The first step in solving these equations
is to transpose rows in A and in r to bring the largest element in the first column to the Ay, position.

We note that

* The x’s are not relabeled by row transposition.

* We choose the row (n=1 —second row) with the largest (in absolute value) first element A, be-

cause we are eventually going to divide by it, and want to minimize the accumulation of roundoff
error in the floating point arithmetic.

Transposition gives
B 24 D&O @0

0 00O
%OSDEHEF O (6)

%16D%2D %E

Now divide row O by the new Ay, (in this case, 3) to get

Dl Y DEO O B350
ol o 5DBF1EFE9D (7)
ot LSkt # g

Subtract row O times A, from rows with n>0:

a 2/3 4/3 DE()D D4/3

D % 0 oA ®
%) Z I D% Dz/3 E
Since |A;;| > |A,;| we do not bother to switch rows 1 and 2, but divide row 1 by A;; = -2/3,
getting
a % % 03,0 050
Ly, 00°0.0 0
Lm0 ©)
d U

get

g
0 (10)
0
0

&0 Pivotal elimination

The resulting transformed system of equations now has O’s to the left and below the principal diagonal,
and 1’s along the diagonal. That is, it has been reduced to upper-triangular form. The solution is
almost trivial, as can be seen by actually writing out the equations:

Ixg + Bx +¥3x, =9 (11.0)
OXO + lxl - II/ZXZ =2 (11.1)
Oxg + Ox, + 1x, = 0 (11.2)

That is, from Eq. 11.2, x, =0. We can back-substitute this in 11.1, then solve for x; to get
X1 = 2 + 11/2 0 = 2
and similarly, from 21.0 we find

o =% -%B2+%0=0.

We test to see whether this is the correct solution by direct trial:

10+02 +50=0
30+22 +40=4
10+20+60=2.

This works—we have indeed found the solution.

We can express the pivotal elimination algorithm in pseudocode as follows:

set n=0

BEG N
find pivot elenment anmong rows with nen
SWAP rows m & n

di vide row n by pivot elenent: A(n,m = A(n,m / A(n,n)
subtract: A(j, k) = A(j,k) - A(j,n)*A(n, k)
increment n

UNTI L n=N
back- substitute

DONE

We leave for an exercise the details of implementing and testing this algorithm. However it is worth
analyzing its running time. We concentrate on the terms that dominate as N — oo. The pivot has
to be found once for each row; this takes N —k comparisons for the k’th row. Thus we make
= N/2 comparisons of 2 real numbers. (For complex matrices we compare the squared moduli of 2
complex numbers, requiring two multiplications and an addition for each modulus.)

We must divide the k’th (pivot) row by the pivot, at a point in the calculation when the row contains
N —k elements that have not been reduced to 0. We do this for k=0, 1, ..., N—1, requiring

=~ N%/2 divisions.

PHYS 551 Computational Methods of Physics &1
Chapter 5 Linear equations and matrix inversion

The back-substitution requires O steps for xy_; , 1 multiplication and 1 addition for xy_, , 2 each for
Xn-3 » etc. That is, it requires
k=0
Zaw&mzww
k=N-1

multiplications and additions.

The really time-consuming step is multiplying the k'th row by Ay , j > k , and subtracting it from row

j. Each such step requires N —k multiplications and subtractions, for j =k+1 to N—1, or
(N =k) N =k = 1) multiplications and subtractions. This has to be repeated for k =0 to N=2,

giving approximately N°/3 multiplications and subtractions. In other words, the leading contribution
to the time is T N°/ 3, which is a lot better than T e N! as with Cramer’s rule.

When we optimize for speed, only the innermost loop—requiring OH\]B/ 3 Hoperations needs careful

tuning; the operations that require time that increases as O 2 comparing floating point
numbers, dividing by the pivot, and back-substituting—need not be optimized because for large N
they are overshadowed by the innermost loop.

Before leaving the subject of elimination methods we should note that it is possible also to interchange
columns as well as rows—but this entails permuting the labels on the x,, ’s. So if elimination with full

pivoting is desired, the extra overhead of keeping track of column swaps must be performed.

3. Factorization methods

We now consider methods based on writing the matrix A as a product of two matrices, one that is
lower-triangular and one that is upper-triangular,

A=LU.

If this can be done without too much trouble, the solution of the linear equations becomes simple:
letting

y = Ux

we solve first the equations
Ly =r

and then (once y is known)

Ux = y.

Symmetric matrices
If the matrix A is symmetric, A,,, = A,,, , we may write

A=SS

where S is lower-triangular, and S is its transpose. Thus we may write

&2 Factorization methods

,_.
(@)
(@)

(] "5 2 alak B
@21 Ay - Aan_ %21 Sn ~000 S - S
O 0= 0O oo O
|:|... Pl e ...E D-. EE-. sas mms wanw E
%“1 AnZ Annl:l %nl Snz STITID |:|o O Snnl:l

SjZSZZ = A]Z - S]l SZI’ j=3, ey N

gBH = Asy - gué - gszHZ

S]} S}} = A]3 - S]l 331 - sz 832, j:4, P 1

etc.
The timing is as follows: there are n square roots (they might be imaginary since for a general

2
real-symmetric matrix it is possible to have S]- ;H < 0) and about N?/2 subtractions and multipli-
alele

cations to be calculated in getting the diagon ments of S. But the off-diagonal elements represent
the time-consuming part of the algorithm since S, requires k — lsubtractionsandmultiplications
(and 1 division) for krunning fromm + 1 to n, and of course, m running ftom 1 to n. This results in
about N°/3 subtractions and multiplications, as with pivotal elimination. The difference is that the
matrix has been factored, hence to solve a second set of linear equations with the same matrix, but

a different inhomogeneous term, requires much less time, of order N,

Tridiagonal matrices
Tridiagonal matrices are ones with non-zero elements along the principal diagonal and along the sub-
and superdiagonals. That is, they look like

[bl Cl O O I:l
U [l
A = %12 bz) 0 E
DO a3 b3 C3 I:l
O O

One reason they deserve special attention is that triadiagonal matrices arise naturally in many other
algorithms—for example solving partial differential equations, or evaluating the coefficients of cubic
spline approximations to curves. A second reason is that such matrices require far less storage than

general NXN matrices—3N rather than N memory locations. Finally, to factorize a tridiagonal

PHYS 551 Computational Methods of Physics &3
Chapter 5 Linear equations and matrix inversion

matrix into lower- and upper-triangular factors requires time that grows proportional to N rather than
3
N°.

Factorizing a tridiagonal matrix into a product LU is facilitated by the fact that the diagonal elements
of U may be taken to be all 1’s, that U may be written as a “bi-diagonal” matrix

El M1 O E
U= M 1 uw .0
H 01 .-
.H
O O
and that L can also be taken bi-diagonal, of the form
@, 0 0 ..0
g O
L = oy A 0 .0
= O
g O
g g
where the lower sub-diagonal can be taken to be the (already-known) vector g, k=2, ... ,n.

The remaining equations to be solved are

A = b

ukZCk/)\k, kzl,...,‘l’l_l

)\k = bk - Ay Up—1 kZZ, e,
The last pair of equations are to be iterated in order, as in the Forth subroutine } f act or shown
below on the following page. The timing of this algorithm is obviously O(IN)—the time required is

proportional to the number of equations to be solved—since there are no nested loops and each loop
is traversed only once.

&4 Factorization methods

\ Linear equations with tridiagonal matrices by LU method
\ reference: Press, et al., "Nunmerical Recipes" (Canbridge
U. Press, 1986)

(c) Copyright 1999 Julian V. Noble.
Perm ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

This is an ANS Forth programrequiring the
FLOAT, FLOAT EXT, FILE and TOOLS EXT wordsets.
\" Environnental dependences:
Assumes i ndependent floating point stack
FALSE [IF] Al gorithm
Ax =r, Ais tridiagonal
k=1,...,n are the diagonal elenents
a(k), k=2,...,n are the | ower subdi agonal elenents
k=1,...,n-1 are the upper sudi agonal elenents

Wite A = LU where L is lower-triangular and U upper triangul ar
If Awere a general matrix this would be possible also but the
deconposition would require Q(n*3) steps. For the tridiagonal
case, however, the deconposition requires only Q(n) steps.

Can assunme L and U are bi-diagonal. In the case of L the | ower
subdi agonal is just a(k). In the case of U we can choose the

di agonal elenents to be 1 (unity). Thus we need to determ ne
the di agonal elenents of L and the upper subdi agonal of U.

Call them L(k) and U(k) respectively. Then

L(1) = b(1)
Uk) = c(k)/L(k), k=1,...,n-1
L(k) = b(k) - a(k)*U(k-1), k=2,...,n
Finally et Ux =y and solve first
Ly =r
via
y(1) =r(1)/L(1)
y(2) =1[r(2) - a(2)*y(1)] / L(2) etc.
t hen
x(n) = y(n)
x(n-1) = y(n-1) - x(n)*Y(n-1) etc.
Usage:
Say a{ b{ c¢{ n }factor r{ x{ n }backsolve
[THEN]

MARKER -tri di ag
BL PARSE undefined DUP PAD C!' PAD CHAR+ SWAP CHARS MOVE PAD FIND NI P 0=
[1F] : undefined BL WORD FIND NIP 0= ; [THEN]

i nclude arrays.f
include ftranlll.f

20 VALUE Nnmax

Nmax | ong 1 FLOATS larray a{ \ input array in vector form
Nmax | ong 1 FLOATS larray b{

Nmax | ong 1 FLOATS larray c{

0 VALUE aa{ 0 VALUE bb{ 0 VALUE cc{ 0 VALUE NN

PHYS 551 Computational Methods of Physics &5

Chapter 5 Linear equations and matrix inversion
Nmax | ong 1 FLOATS 1larray r{ \ i nhonogeneous term
Nmax | ong 1 FLOATS larray L{ \ diagonal of lower-triangular matrix
Nmax | ong 1 FLOATS larray U \ subdi agonal of upper-triangular matrix
Nmax | ong 1 FLOATS larray x{ \ solution vector

}factor (al b{f ¢{ n--)

}b

TONN TOcc{ TObb{ TO aa{
f* bb{ 0 }" FDUP FO= ABORT" Reduce # of equations by 1"

L{ o} F
fr Y 0}y =cc{ O}/ L{ O}
NN 1- 0 DO fro U} =cc{ I}/ L{TI }"
fr L{I_1+} = bb{I_1+} - aa{l_1+} * U{I}"
LOOP ;
acksol ve (r{x{n--)

TONN TO aa{ TO bb{

f" bb{0} = bb{0} / L{O}"

NN 1 DO f" bb{ I '} = (bb{ I '} - a{l}*bb{I_21-}) / L{I}"
LooP

f" aa{ NN_1- } = bb{ NN_1- }"

ONN2- DO f* aa{l} = bb{l} - UIl}*aa{l_1+}"

LOOP ;

1515} Factorization methods

LU decomposition of a general matrix

Wehaveseen that it is rdaivdy straghtforwa dto express atridagond matrix a aprodud of
alower- with an upper-triangula matrix. Wenow seehow this decomposition can begopliedto
agagd meatrix*. Supposeagven marix A could berenritten

oy any ...0 A 0O 0O ...gd
oo Aot) 00 D%‘oo Ho1 5
A=[pdy --0=LU=R0A1 0000 My -0
0. O O O0p o .0
i i g - 80 g

then the solution of
LUx=L(Ux) =r
can be found in two steps: as in the tridiagonal case, first solve
Ly=r
for y = Ux:
Ao Yo = o
AoYo * Apyp =1y

Moo + My + Apy =1y
. etc. ...

—this can be solved successively by forward substitution. Next solve for x by back-substitution:

MN-1N-1 XN-1 = O
Mn-2N-2 XNz F Moo n-1 Xv-1 = In=2
. elc. ...
In solving for y, the n’th term requires n multiplications and n additions. Since we must sum n from
0toN-1,werequire N(N-1)/2 = N7/2 multiplications and additions. Solving for x similarly requires

about N 72 additions and multiplications. Thus the back-solving process requires about N? operations
in all, hence the dominant time in solving the equations is the time to LU-decompose the matrix,

which turns out to be OEN>/3 H
The equations to be solved are
N-1

Z)\mk Min = Amn)
k=0

constituting N 2 equations for N 2 + Nunknowns. Thus we may arbitrarily impose N extra conditions,
which we choose to be

)\kk:]" k:O, ...,N_l.

4. See,e.g., W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes (Cam-
bridge University Press, Cambridge, 1986), p. 31ff.

PHYS 551 Computational Methods of Physics &7
Chapter 5 Linear equations and matrix inversion

These equations are easy to solve if we proceed in a sensible order. Clearly,

)\mk =0 , m> k
M = 0 , k<n
so we can divide up the work as follows: for each n, write
m—1
Mnn = Amn - Z)\mk“kn’ m:O’ 1’ RN
k=0
| O n-1 %
Ay = — %&mn - Z A M m=n+l,n+2, ..., N-1
unn |:| k:O |:|
U [l

It is clear by inspection, that the terms on the right sides of these equations are computed before they
are needed. We can store the computed elements A, and L, in place of the corresponding elements

of the original matrix (on the diagonal we store W,,,,, since Ay, = 1 is known).

To limit roundoff error we again pivot, which amounts to permuting so the row with the largest
diagonal element is the one we are working on.

4. Eigenvalue problems

Many physicd systems can bergx esented by systems of linear equations. Masses on springg,
pendula dedricd drauits, structuresS, and moleaules ae exanples. Such systens often can
osdllaesinusoiddly. | f the amplitude of osdllaion ranans bounded, such motions aecdled
stalde Conversdy, sometimes themotions of physicd systems a eunbounded —theamplitude
of any smdl disturbancewill ina esse exponentidly with time An exampeis apend! bdancd
onits point. Exponentidly g owing motions ae caled—for obvious ressons—unstalde

Clearly it can be vital to know whether a system is stable or unstable. If stable, we want to know its
possible frequencies of free oscillation; whereas for unstable systems we want to know how rapidly
disturbances increase in magnitude. Both these problems can be expressed as the question: do linear
equations of the form

Ax = Apx

have solutions? Here A is generally a complex number, called the eigenvalue (or characteristic value)
of the preceding equation, and p,,,, is often called the mass matrix. Frequently p is the unit matrix

)

mn’
, m=n
, mMEN

6mn=§§

5. buildings, cars, airplanes, bridges ...

&6 Eigenvalue problems

but in any case, P,,,, must be positive-definite (we define this below). A non-trivial solution, (that

is, with x # 0), of the equation

(A-Ap)x =0
exists if and only if det(A — A p) = 0. This fact is useful in solving eigenvalue problems, since
the secular equation (or determinantal equation)

det(A) = 0

is a polynomial of degree N in A, hence has N roots (either real or complex)®. When Pmn = Onn»

these roots are called the eigenvalues of the matrix A.
Eigenvalue problems arising in physical contexts usually involve a restricted class of matrices, called

real-symmetric, or Hermitian matrices’, for which AEI =A,,, . (The superscript ~ denotes complex

conjugation.) All the eigenvalues of Hermitian matrices are real numbers. How do we know? We
simply consider the eigenvalaue equation and its complex conjugate:

z Amn xn = AZ pmn xn

Y % An=ATY e

The second of these can be rewritten (using the fact that A and p are Hermitian)

m

Multiplying by xE and by x,, , respectively, summing both over m and subtracting gives
_qo ,o 0
0= % —ADZ Xy Prun X -
n,m

However, as noted above, p is positive-definite, i.e.

X p&k = Z prmnxn>O

n,m

for any non-zero vector x . Thus, 7\D = A, thatis, A is real.

6. This follows from the fundamental theorem of algebra: a polynomial equation,
pR)=ag+ag+at+...+a,7"=0, of degree n (in a complex variable z) has exactly n roots .

7. After the French mathematician Charles Hermite (1822-1901).

For clarity we now omit the vector “ - ” and dyad “ « ” symbols from vectors and matrices.

PHYS 551 Computational Methods of Physics &9
Chapter 5 Linear equations and matrix inversion

In vibration problems, the eigenvalue 1 usually stands for the square of the (angular) vibration

frequency: A = f. Thus, a positive eigenvalue A corresponds to a (double) real value, ¥, of the
angular frequency. Real frequencies correspond to sinusoidal vibration with time-dependence
sin(wx) or cos(wx).

Conversely, a negative A corresponds to an imaginary frequency, *iw and hence to a solution that
grows exponentially in time, as

sin(i «x) = i sinh(wx)
cos(i x) = cosh(wx) .
There are many techniques for finding eigenvalues of matrices. If only the largest few are needed,
the simplest method is iteration: make an initial guess x© and let
A"
G, p 30 EVZ ’

L0 =

)

assuming the largest eigenvalue is unique,the sequence of vectors x'7, n = 1,2,...,1is guaranteed

to converge to the vector corresponding to that eigenvalue, usually after just a few iterations.

If all the eigenvalues are wanted, then the only choice s to solve the secular equation for all Nroots.

5. Divide and conayuer—Stra%en’@ method

Strassen’ has pointed out that evaluating matrix products by partitioning can substantially speed the
most time-consuming matrix operations, multiplication and inversion. For example, it appears as
though the product of two partitioned matrices,

_ A ApOBy, Bpd A By +AR By A Bp+Ap By [Cp0
AB = AyEB, BB A B +A, B, A, B +Ay,BynS C,,H
21 Anpbn Bag 21 B Ay By Ay By + Ay By 1 Cng

requires 8 matrix multiplications and 4 matrix additions to evaluate. Strassen has shown that in fact
the evaluation can be performed with 7 matrix multiplications:

b1 = H“‘u +AZZHW11 "'BzzH

b, = HXZI"'AZZHBII
p3 = Ay Wu _BZZH
by = E”A11+A21%@11+BIZH

9. V. Strassen, Numer. Math. 13 (1969) 184. See also V. Pan, SIAM Review 26 (1984) 393.

920 Divide and conquer—5Strassen’s method

pbs

HXU +Ap HBzz

Pe = Agy E‘Bu +321E

b7 H*lz - AzzH@u + BZZH

and 18 matrix additions:

Cii=b1 —bs +bs * Dy

Cp =p3 + bs
Cy1 = by * be

Cyy =py = by D3+ Dy

These equations look, at first blush, half as efficient as 8 multiplications and 4 additions. But let us
examine the time to multiply two partitioned matrices, first by the straightforward method and then
by Strassen’s: clearly,

Mn =38 Mn/z +4 An/l
where M, is the multiplication time and A, the addition time, for square matrices of order n.

Settingn = 2% we rewrite the above recursion relation as

&
m, = Mgt = 8my + 4a4t = 8my; + 454

where a is the elementary addition time (time to add two numbers). Now we define

df o
g, = my x4

and see that
Gk =2 O-k_ 1 + a,
which is a linear difference equation whose solution will be of the form™©
— k
O, = UA" + B;
it is then easy to see that A = 2 and B = —a; thus, recalling that 2 = n we find
M, = H n’ - an’

where we can identify [l with the time to multiply two numbers.

10. by analogy with linear diferential equations with constant coefficients

PHYS 551 Computational Methods of Physics 91
Chapter 5 Linear equations and matrix inversion

Applying the same idea to Strassen’s method we obtain the recurrence relation
N\ _ N\ 2
Mn—7Mn/2 + 18@(71/2)

or, after solving in the same manner,

i 2

M, = un®? - 6an’,

where

df
lg7 =log, 7 = 2.807 ...

That is, partitioning allows a potentially large reduction in the time to multiply dense matrices.

Matrix inversion
By writing apatitioned matrix in theform

@A A0 I OHDA;, AL
A = 11 AIZD: » O] 11 IZD

where
Z=~Ay - A21AH Ap

we may express the inverse of A as

- - -1
Al = N —ANARZ I 0
0 7! A AL T

which leads to the recursion for I, , the time to invert an nxn matrix:
L, =21, +5M,,
whose solution, by the method we used earlier, is
_ lg 7
In = HUn + O(ﬂ)
i.e., the time needed to invert is asymptotically the same as that needed to multiply.

Supposewe ma dy wish tosalvealinea systemwithout invetingthemetrix: can wegan some
speed that way? By patitioningweseethat the problem

Ax = r
can be written

@, A,030 G0
i Avgdis dig
0% Zomo MO

so that

92 Divide and conquer—5Strassen’s method

and
Zx; =y,
x; = Afj Hl - Ap XZH

Thus the solution time satisfies the recurrence relation
— lg 7 K o2
Sn - Sn/z + 3 “. n + 3 7 n

whose solution is dominated by

_ 1 lg 7
Sn—ipn .

Recursive solution of linear equations therefore has the same asymptotic running time as matrix
multiplication, except that 2 x fewer operations are required than for multiplication or inversion. That
is, it should be about 2.5x faster to solve a dense system of 1000 linear equations by recursive
partitioning than by ordinary Gaussian elimination, even using a scalar processor.

The Appendices list a Forth program for Gaussian elimination with (partial) pivoting, and a
FORTRAN program for LU decomposition and back-substitution.

PHYS 551 Computational Methods of Physics 83
Chapter 5 Linear equations and matrix inversion

\ Linear equation solver using Gaussian elimnation with row pivoting

This is an ANS Forth programrequiring the
FLOAT, FLOAT EXT, FILE and TOOLS EXT wordsets.

Envi ronnent al dependences:
Assumes i ndependent floating point stack

\
\
\
\
\
MARKER - sol ve

\ conditional conpilation

BL PARSE undefined DUP PAD C! PAD CHAR+ SWAP CHARS MOVE PAD FIND NI P 0=

[1F] : undefined BL WORD FIND NIP 0= :; [THEN
undefined f." [1F] INCLUDE ftranlili.f [THEN]
undefi ned frane| [I'F] I NCLUDE flocals.f [THEN]
undefined } [I'F] I NCLUDE arrays.f [THEN]
undef i ned zdup [ITF] : zdup FOVER FOVER ; [THEN]
undefined 1/f [TF] = 1/f 1.e0 FSWAP F/ ; [THEN
\ data structures
0 VALUE Nmax \ size of matrix
FVARI ABLE Det \ det erm nant
1. 0e-20 FCONSTANT tiny \ condition criterion
1000 long 1 CELLS 1larray |pern{ \ array of pernuted row | abel s
\ locate next pivot row
}}get _pivot (A[{ col# -- lpiv) (f: --)
0 \'" dummy ar gunent
LOCALS| Iperm Col mat{{ | \ local nanes
Ipern{ Col } @ TO Iperm
f* ABS(mat{{ IpermCol }}) " (f: -- Ja[col,col]]|)
Col \ 1st pivot value on stack
Nmax Col 1+ ?DO \ begin | oop

Ilperm{ | } @ TO |Iperm

f* ABS(mat{{ IpermCol }}) " (f: -- |a| |a|)
zdup (fr--lal [a| [a [a'])
F< \ newelt >old.elt ?
I F FSWAP DROP | THEN
FDROP
LOCOP \ end | oop
FDROP ;

\ multiply a row by a constant
}}row x (M{ row--) (f: x -- x)
0 \ dummy ar gunent
LOCALS| Ipermrow# mat{{ |
Iperm{ row# } @ TO Iperm
Nmax row# ?DO

FDUP (f:-- xx)

mat{{ Iperml }} DUP F@ (-- adr[elt]) (f: -- x x elt)
F*

F!

LOOP ; \ Usage: Al{ 2 }}rowx

94 Divide and conquer—Straaaen’a method

\ subtract a row times a constant from another row
\ this is the innernmost [oop -- CODE for speed!
}ril-r2*x (M{r1r2--) (f: x--x) \initialize assuned

00
LOCALS| 1112 7r2 r1 mat{{ | \ local nanes
frame| aa | \ local fvariable

Ilperm{ r1} @ TO 11
Ilperm{ r2 } @ TO 12

Nmax r2 ?DO \ begin | oop
f" mat{{ 111 }} =mat{{ 121 }} - mat{{ 121 }} * aa"
LOOP \ end | oop
aa F@
| frame

\ v[i] = v[i] - v[j] * x

yvl-v2*x (M rlr2 -- f: x --)
LOCALS| r2 r1 v{ |
FRAME| aa |
f*v{ Iperm{_r1_} @}=v{ Iperm{_rl_} @}-v{ Iperm{_r2_}_@} * aa"
| FRAME

\ pernmute row | abel s

: memswap (adrl adr2 --)
LOCALS| a2 al |
al @ a2 @ al! a2'! :

}swap (I{ mn--) \ exchange 2 elts in an integer array
LOCALS] N MI{ |
I{ M} I{ N} mem swap ;

initialize (A{ MV -- Al{ V)

DUP 2@ DROP TO Nmax \ Nmax = # of equations
Nmax 0 DO | Ipernm{ | } ! LOOP \ init |oop-label array
f* Det = 1" \ init determ nant

updat e_Det (--) (f:x--x)

FRAME| aa |
f* - Det * aa" (f: -- D =-x*D)
FDUP FABS tiny F<

ABORT" Il1l-conditioned matrix"

Det F! aa F@
| FRAVE

PHYS 551 Computational Methods of Physics 95
Chapter 5 Linear equations and matrix inversion

triangularize (A{l{ VYW -- A{{ V) \ assunme INTIALIZEd

00 \ dummy argunents
LOCALS| row Ipiv vec{ mat{{ | \ local nanes
Nmax 0 DO \ outer loop - by rows
mat{{ | }}get_pivot \ find pivot in col |
TO lpiv \ pivot index
Ipern{ | Ipiv }swap \ exchange rows
Ilperm{ | } @ TO row \ get current row#
f* mat{{ row.| }}" \ pivot elt -> fstack
updat e_Det (f: x -- x)
1/ f

—

mat{{ | }}rowx rowfi] =rowi] / pivot
vec{ row} DUP F@ F* F!' \ V[i] = V[i] / pivot

Nmax | 1+ ?DO \ mddle |loop - by rows
Iperm{ | } @TO row
f*" mat{{ rowJ }}" \ multiplier -> fstack
mat{{ | J }}rl-r2*x \rowfi] =rowfi]-rowfj]*x
vec{ | J }vi-v2*x \ same for V{ and drop x
LOCOP \ end niddle | oop
LOCP \ end outer |oop
mat {{ vec{ ; \ push these addresses

back_solve (A{l{ V] -- V{) \ assune |NTIALIZEd

0 0e0 \' dummy argunents
LOCALS| Jpermvec{ mat{{ |
FRAME| aa | \ aa = sum
0 Nmax 2 - DO \ begin outer |oop
f" aa = 0" (f: sun¥0)
Ilperm{ | } @ TO Jperm \ pernuted row i ndex
Nmex | 1+ DO \ begin inner |oop
f* aa = aa - mat{{ Jperml }} * vec{ Ilperm{_I_} @}"
LOOP \ end inner |oop
f" vec{ Jperm} = vec{ Jperm} + aa"
-1 +LOOP
| FRAVE
vec{

\ solve Ax = V ; solution vector in V{ , matrix A{{ overwitten
: report (v --)
LOCALS| vec{ |
Nmex 0 DO CR ." x(" I . .")="
f* vec{ Ilperm{_I_} @} " F.
LOOP ;

}}solve (A{{ VY --)
initialize triangularize back_solve report ;
\ Usage: af{{ v{ }}solve

90 Divide and conquer—5Strassen’s method

SUBROUTI NE LUDCVP(A, N, NP, | NDX, D)
PARAMETER (NMAX=100, TI NY=1. OE- 20)
DI MENSI ON' A(NP, NP) , | NDX(N) , VW(NVAX)
D=1.
DO 12 I=1,N
AANVAX=0.
DO 11 J=1,N
I F (ABS(A(I,J)).GT. AAMAX) THEN
AAMAX=ABS(A(1, J))
ENDI F
11 CONTI NUE
I F (AAVAX. EQ 0.) PAUSE ' Singul ar ma-

W(1) =1./ AAVAX
12 CONTI NUE
DO 19 J=1,N
IF (J.GT.1) THEN
DO 14 1=1,J-1
SUMEA(1, J)
IF (I.GT. 1) THEN
DO 13 K=1,1-1
SUMESUM A(1, K) *A(K, J)
13 CONTI NUE
A1, J)=SUM
ENDI F
14 CONTI NUE
ENDI F
AANVAX=0.
DO 16 1=J, N
SUMEA(1, J)
I F (J.GT. 1) THEN
DO 15 K=1, J-1
SUMESUM A(1, K) *A(K, J)
15 CONTI NUE
A1, J) =SUM
ENDI F
DUVEVV(|) * ABS(SUM
I F (DUM GE. AAVAX) THEN
| MAX=]
AANVAX=DUM
ENDI F
16 CONTI NUE

trix.’

17

18

19

I F (J.NE. | MAX) THEN
DO 17 K=1, N
DUMEA(| MAX, K)
A1 MAX, K) =A(J, K)
A(J, K) =DUM
CONTI NUE
D=-D
W(I MAX) =W(J)
ENDI F
I NDX(J) =1 MAX
I F(J. NE. N) THEN
IF(A(J,J). EQ0.)A(J, J) =TI NY
DUMEL. / A(J, J)
DO 18 |=J+1, N
A1, J)=A(l, J)* DUM
CONTI NUE
ENDI F
CONTI NUE
I F(A(N, N). EQ 0.) A(N, N) =TI NY
RETURN
END

PHYS 551 Computational Methods of Physics
Chapter 5 Linear equations and matrix inversion

11

12

13

14

SUBROUTI NE LUBKSB(A, N, NP, | NDX, B)
DI MENSI ON A(NP, NP) , | NDX(N) , B(N)
11=0
DO 12 1=1,N
LL=I NDX(1)
SUMEB(LL)
B(LL) =B(1)
IF (I1.NE. 0) THEN
DO 11 J=I1,1-1
SUMESUM A(1, J) *B(J)
CONTI NUE
ELSE | F (SUM NE. 0.) THEN
1=l
ENDI F
B(1)=SUM
CONTI NUE
DO 14 I=N, 1, -1
SUMEB(1)
I F(I.LT. N) THEN
DO 13 J=I+1, N
SUMESUM A(1, J) *B(J)
CONTI NUE
ENDI F
B(1)=SUM A(I, 1)
CONTI NUE
RETURN
END

97

96

Divide and conquer—Strasaen’a method

