PHYS 551 Computational Methods of Physics 1
Chapter 1 Chapter 1: Arithmetic on digital computers

Chapter 1: Arithmetic on digital computers

In this chapter we explain what a computer is, how it operates, and how it can be programmed to carry
out sequences of instructions.

1. What is a computer?

A computer is any device for manipulating numbers. Examples that come to mind are the abacus,
the checkered counting table (from which the term “exchequer” is derived), the slide rule, mechanical
tabulators and calculators, and more recently, analog and digital electronic computers.

Analog computers
One way to define a digital computer is by contrast with a

predecessor, the analog computer. An electronic analog com- 1& O T

puter represents numbers as voltages. Then it adds two numbers

by placing the corresponding voltages in series and measuring V2

the sum, as in the figure to the right. An analog computer can
represent differential equations of the form

® Vi + V2

dx
&t
LD |
using electronic circuits like that shown to the right!, that Vi T
)

integrate time-varying signals, and writing &7

df dQ

& = IRO0F |

(As a practical engineering matter, electronic circuits _

that integrate their input are more stable and less noisy L
than ones which differentiate itz.) +

In the days when an electronic digital computer was a
large, slow, unreliable, expensive affair made of mechani- -
cal relays or vacuum tubes, analog computers were popu-

1. A capacitor stores charge, the integral of current with respect to time.

2. P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, New York, 1990), p.
222ff.

2 What is a computer?

lar engineering tools. Their chief disadvantage lay in the realm of numerical precision: the most
precisely constructed electronic circuit rarely can maintain voltages within a tolerance of +0.1%.
Digital computers, on the other hand, work with integers (whole numbers) so their precision is perfect
(barring internal failure, of course).

Digital computers

Soin a nutshell, a digital computer is a machine for manipulating whole numbers. It is called “digital”
because in the binary system, integers are represented by strings of ones and zeros, so the digits3
making up an integer are 1 or 0. These values may in turn be represented by a voltage level on a wire:
high voltage might mean 1, and low voltage would then mean 0. So a set of N capacitors can represent
an N-bit binary integer, lying in the range O (all capacitors discharged) to N -1 (all capacitors
charged).

Exercise

Why is 2V = 1 the largest integer representable by N binary digits?
End of Exercise

We can think of a capacitor bank as a kind of memory element. As long as the capacitors maintain
their charges the memory cell will “remember” the number stored therein. A practical memory cell
must include a method for charging and discharging the capacitors (storing/erasing the number) as
well as for observing their settings without modifying them (fetching the number). Obviously, a usable
computer memory consisting of many elements (or cells) must also assign a numerical “address”—a
unique integer that distinguishes it from others in the system—to each memory cell.

By interconnecting switching circuits that can be set and observed via external signals, one may also
construct circuits that perform the functions of two-valued logic. The most primitive of these
functions is (bitwise) logical NOT, that reverses a bit: that is, if the bit was 1, NOT makes it 0, and
vice-versa. A circuit for NOT is shown on p. 6 below.

Next in complexity are functions that combine two inputs (switch settings) to produce a single output.
For example, the logic function AND produces 0 as an output if either of its inputs is 0, or if both are

0.

If we think of 1 as TRUE and 0 as FALSE we see this makes sense: @ ANDb will be TRUE only if both
propositions a and b are TRUE.

Similarly we can define OR (TRUE if either input is, FALSE if both are FALSE) and XOR (“exclusive
or”, TRUE only if one input is TRUE and the other FALSE). As we shall see, it is possible to perform

3. binary digits are called “bits”

PHYS 551 Computational Methods of Physics 3
Chapter 1 Chapter 1: Arithmetic on digital computers

arithmetic—addition and multiplication (which is merely repeated addition)—by compounding the
primitive logical operations.

Finally, one may combine logical operations to produce complex circuits that interpret numbers as
instructions. That is, different input numbers produce different sets of actions. Such a device is called
a central processing unit, or CPU.

A modern digital computer consists of at least the following components:

e CPU

* Storage elements that hold instructions
* Storage elements that hold data*

* Interaction with the outside world:

O keyboard for input (“standard input device”);

O printer or screen (CRT) for output (“standard output device”).

The input device allows us to place instructions in the instruction store and data in the data store
(i.e., “program the computer”). The CPU reads instructions sequentially from the instruction store,
and performs operations on the data. Finally, the results of its cogitations are returned via the output
device.

2. Representing numbers

The numbers most of us meet in daily life are expressed in two common notations: the archaic Roman
system (found on clocks and movie copyright notices) and the more recent decimal or Arabic
positional notation. Other notational systems, such as the Mayan, Egyptian or Babylonian, have been
devised other times and places. This section explains the binary number system, the two-valued logic
that can be based on it, and how arithmetic may be translated into logical operations.

The binary number system

As anyone knows who has tried it, addition and subtraction are difficult using Roman numerals.
Multiplication and long division are well-nigh impossible. It is therefore hardly surprising that little
progress in computation—especially in applying mathematics to engineering and finance—took place
before 1000 AD when Arabic positional notation’ reached the West.

Arabic notation represents an integer as a sum of multiples of integer powers of 10 (why it is called
the decimal system), in fact, as a polynomial (with x = 10) whose coefficients are the digits; thus, e.g.,

4. These two sets of storage can be the same (“Von Neumann architecture”) or distinct (“Harvard archi-
tecture”). Both systems are used in practice.

5. Which some say was invented in India.

4 Representing numbers

732=7x 10
+3x10! (1)
+2x10°

The positional convention 732 is a shorthand expression of Eq. 1 omitting explicit powers of ten and
explicit addition signs.

In elementary school we are taught Arabic notation and its corresponding arithmetic rules by rote.
So ingrained are these rules we seldom think of them in algebraic terms—for example, adding two
numbers is precisely equivalent to adding two polynomials.

Once we realize what is going on, however, it becomes clear there is nothing sacred about the number
10 (the “x” in the above polynomial of degree 2). In fact, the x in the polynomial could have been
any positive integer N > 1, and the coefficients (digits) would then be integers in the range
[0,...N-1]. The integer N is called the base of the numbering system.

Several decades of computer programming have boiled down the possible number bases to four that
are most commonly employed: decimal (because that is what human beings are taught in school),
binary (base 2), octal (base 8) and hexadecimal (base 16).

In base—2 arithmetic the only possible digits are 1 and 0. From our previous remarks about a digital
computer being made of switches we now begin to see why the binary system might be useful in
computer design.

However, what is the hexadecimal system for? Briefly, 16 = 2%, This fact makes it easy to convert
between hexadecimal and binary number representations. Hexadecimal, as we shall see, is 4 X more
compact than binary, as well as being easier for humans to read and write, so for this, as well as
additional reasons cited below, hexadecimal has become popular and common.

As we have already remarked, in binary notation the only possible digits are 1 and 0. So typical binary
numbers might be 110, 1010, 1101, etc. How do we convert these to/from decimal notation? We use
the polynomial form, thus writing

110=1x2°
+1x2! (2)
+0x2°
Equation 2 is easily seen to add up to O + 2 + 4 =6 in decimal notation. Similarly,
1010=0x2°
+1x2!

+0x2?
+1x2°

=0+2+0+8=10

PHYS 551 Computational Methods of Physics 5
Chapter 1 Chapter 1: Arithmetic on digital computers

Question:
What decimal number does the binary number 1101 represent?

The rules for adding and subtracting binary numbers are precisely the same as those we learned for
decimal arithmetic: for example,

1011
+101 ;
10000

we see this is right because 11 + 5 = 16.

5. Arithmetic and logic W
40/
George Boole, a British mathematician of the 19th 4 T/LF A AND B
Century, developed a system of 2-valued logical opera- A B
tions, now called Boolean algebra in his honor. This ﬂl ﬂl

system can be applied to switching circuits to produce
devices that perform logical operations. For example,
we can think of two relay switches in series as AND (the
output is “high”, i.e. TRUE, only when both switches
are closed, meaning both inputs are TRUE). Similarly, Ly

two relay switches in parallel produce an OR (the _—

output is TRUE when either input—or both—is 4}
TRUE).

Logical operators can be summarized by their truth A

tables. If we represent TRUE by 1 and FALSE by O, then

we may write the truth table for AND below:
Truth Table for AND o
A 1 0 &
B

: o o B%
0 0 0

Similarly OR has the truth table

A OR B

) Arithmetic and logic

Truth Table for OR 1y
A 1 0
B
1 1 1
1
0 0 not A

Finally, NOT could be accomplished by one normally A

open relay and a pull up resistor, or by a normally closed

relay and a pull-down resistor, as shown in the two

A /77

figures to the right.

We now explain the logical notation we shall use here:

if A is one input and B another, then the result of
“ANDing” them together is written AB. That is, AB is
a shorthand for “A AND B”. Again, the shorthand for
“AORB”is A + B. Finally, if we apply the NOT operator
to an input, as in NOT A, we write it as A. These may
be tabulated as:

not A

Operation Notation
AANDB AB A A and B (AB)
A ORB A+B g
NOT A A
A A or B

The three basic logical operators are sometimes repre- <>w not A (~ A)

sented as circuit blocks, shown to the right.

The exclusive-OR operator, XOR, has the truth table shown below, and the symbol .
Truth Table for XOR
A 1 0
B
1 0 1

PHYS 551 Computational Methods of Physics 7
Chapter 1 Chapter 1: Arithmetic on digital computers

XOR can be constructed from AND, ORand NOT: we see that the inverse of the truth table for AND,
i.e. that of AB, is:

Truth Table for AB

A 1L 0
| 0
0 1

S
1 /
If we AND this output with the output from j
N
N

A +B, we achieve the truth table of XOR.
That is, we can write A OB = (AB)(A +B).
In terms of circuit elements we might express
this result as the figure to the right.

Bihary arithmetic
We next need to see how binary arithmetic
can be performed using logical elements.

Addition A
Consider addition: to add two binary num- }«%

bers we add their corresponding digits. A+ B
Clearly, the digit that results from addinga j
pair of digits has the same truth table as XOR. G :D—@
That is, we want two O’s or two 1’s on input
to yield an output digit O, whereas 1 and O or ©

0 and 1 should produce 1. ;D— C arry bit

However, this is not the whole story. If we add

1 and 1 we get two, i.e. 10 in binary notation.

So we must arrange to carry the 1 into the

next column, as we do when adding by hand. If we AND the two inputs at the same time we XOR
them, we obtain a carry digit (bit) only when both inputs are 1, which is what we want. Note we do
not need an extra AND gate for this, the signal we need can be found after the first AND, as shown
to the right.

There are several ways we can arrange to perform addition with carrying, on numbers larger than 1
(i.e. represented by a row of bits). To understand a full addition circuit, we imagine numbers are stored
by an array of switches called a “register”. Usually registers in modern computers are 4 (“nybble”), 8
(“byte”), 16 (“word”), 32 (“dword”) or 64 (“gword”) bits wide, although in some special-purpose
machines they may be 20 or 21 bits wide. Register widths that are integer powers of 2 are —for obvious
reasons—especially convenient.

Imagine adding 4-bit numbers. We could employ a single %2 adder circuit if we treated each pair of
input bits sequentially—say from right to left. Or we could do all 4 bit pairs at once using 4 distinct

o Arithmetic and logic

1 adders. This example is especially noteworthy: here we first encounter the engineering tradeoff
between space and time, that governs the relation between program size and speed. We see that if
chip “real estate” is limited (so we only have room for one %2 adder circuit) we must expect our 4-bit
adder to go four times slower than if we had room for four components.

Suppose we can do 4 bits at once. Call the two input registers A and B, and now the operations AND
and XOR will be applied bitwise. We imagine a result register, C, that holds A O B and another, D,
that holds AB shifted 1 bit to the left, with O as the right-most bit. Shifting one bit to the left is just
multiplication by 2, so we write

A plus B =C plusD = (A 0 B) plus (2 x AB) 4)

Equation 4 has the unusual property of defining the operation plus in terms of itself! However, despite
appearances this definition is not circular. It simply means “apply the same operation to C and D,
repeating until the end point becomes obvious.”

So, clearly, we have
Cplus D=(C O D) plus (2 x CD) = HA OB 2 XAB)leus4 x (A O B)(AB)
We see that since multiplying any number in a 4-bit register by 16 is the equivalent of zeroing it, and

that since the factor 2" X keeps doubling, at some point we are adding something plus zero, so we
can stop. We can therefore think of an adder as a cyclic process (in what follows, — means “is replaced

by”):

Begin
A-ADOB
B ~ 2(AB)

Repeat until B =0

This basic idea, with refinements, can be applied to construct 8-, 16-, 32- or 64-bit adders.

Let us work through two examples: we suppose we have a 4-bit register to hold the result of XOR,
and another to hold the carry bits 2(AB). First we add 7 and 4:

binary decimal operation

0111 7

0100 4

0011 XOR

1000 carry = 2AB
1011 XOR again

0000 cartry = 2AB =0

Then we add 7 and 10:

PHYS 551 Computational Methods of Physics 9
Chapter 1 Chapter 1: Arithmetic on digital computers

binary decimal operation

0111 7

1010 10

1101 XOR

0100 carry = 2AB
1001 XOR again

1000 carry = 2AB =0
0001 XORyet again
0000 carry = 2AB =0

We keep adding the “XORs” register to the “carries” register until the carry bits have fallen off the left
end, i.e. the “carries” register contains only zero bits. Note the second result is 0001 because

7410 = 17 = 1 (mod 16).

Subtraction

Having found out how to add numbers, we next ask how to subtract them. It is of course possible to
combine logic elements to make a subtractor (with borrowing) and this was done in the early digital
computers. To represent numbers with both algebraic signs, an extra bit, called the sign bit, was
reserved for each number, O representing a positive- and 1 a negative number.

However, more recent computers use a cleverer method—2’s-complement arithmetic. To subtract
one number from another, i.e. to evaluate A — B, we may rewrite it as A + (=B) ; but how does this
help? The answer lies in a special representation for negative integers. Consider a 4-bit register for
simplicity: in binary notation the bit patterns 0000...1111 represent (decimal) integers from O to 15:
that is 16 possible combinations. But there are also 16 integers in the range -8...+7. So if we wish
we can map the latter range (which includes both negative and positive integers) onto the 16 bit
patterns provided by a 4-bit wide register. Not all mappings are equally convenient, however. One is
especially useful, as we are about to see.

The 2’s-complement mapping takes the first A integers (in a 2"-wide register) as the positive

integers from 0 to 2" "' = 1. In our example 4-bit register, this means 0...7. The negative integers are
represented by

-A EKplusl

The number —1 is therefore represented by 1111, =2 by 1110, -3 by 1101, —4: 1100, -5: 1011, —6:
1010, —7: 1001, —8: 1000. We see that in a sense the range —8...7 has been wrapped around so that
the gap (between positive and negative integers) occurs at 7, i.e. ordinary 8 becomes -8, ordinary 9
becomes -7, ...

What is the use of this 2’s-complement representation? We can see instantly that first of all, this
representation obeys the first law of negation:

~(-A)=A.

10 Floating point arithmetic

But even more important, as one can easily see by trying it with explicit integers, one gets exactly the
same result by A + (B + 1) as by the more direct A — B (evaluated with the usual subtraction-with-
borrowing rules).

Example
Evduae 7 - 3 in binay notaion drealy and by addng using the 2’s-complement method,
assuming4-bit regstes.

Solution
The binary representation for 7 is 0111, and that for 3 is 0011. Thus we have

0111
—-0011

0100
using the usual rules. Now we repeat using the 2’s-complement method. Writing
-3 . 0011+1=1101
we have

0111
+1101.
0100

Note that in performing the addition we had an extra carried bit that “fell off” the left end of the
resultregister. Thisis typicalof2’s-complementsubtraction.
End of Example

A computer with one addition circuit is much easier to build than one that needs a subtractor as well.
The bitwise NOT operation (that could be done as XOR with 1111, and which is usually included as
a machine logical instruction anyway) is the only extra cost in the 2’s-complement design.

Multiplication

Since multiplication is merely repeated addition, once we have built an adder it is straightforward to
construct a multiplier. So virtually every microprocessor possesses the ability to multiply integers. On
the other hand, division is a more complex process, more difficult to design hardware for. Early
computers often synthesized division as a sequence of multiplications and subtractions. (In the next
chapter we shall see how this is possible.) Division was much slower than multiplication that good
programming technique required avoiding division as much as possible. This is still true for certain
special-purpose microprocessors that lack a division instruction. Most recent general-purpose com-
puters implement a hardware division instruction comparable in speed to multiplication.

With the preceding discussion and examples we have come to the end of our exposition of how simple
switching circuits can perform logical and arithmetical operations. Since this is not a text on computer
design or circuit theory, we must leave this subject here.

4. Eloating point arithmetic

PHYS 551 Computational Methods of Physics 11
Chapter 1 Chapter 1: Arithmetic on digital computers

So far we have discussed how digital computers represent integers and compute with them. However,
for scientific and engineering applications integers are too limiting. For example, on a machine with
32-bit cells the range of integers that we can represent is

—2147483648 < n < 2147483647,

i.e. about 2 x 10°. For many calculations this is inadequate by many orders of magnitude. For this
reason numerical analysts have developed floating point number representations.

Most computer languages in common use permit number entry (and display) in a nearly universal

format closely related to scientific powers-of-10 notation: 0.936E7 means 0.936x10" and so forth.
We now inquire how such numbers can be represented internally, that is, in the form of bit patterns
in memory cells. Although many such representations have been invented, most languages today use
the near-universal IEEE standard® for single- (32-bit) or double (64-bit) precision numbers.

Number representation
In general, a floating point number (excluding the sign) of s significant digits is represented as

0did; ... dy xB" = %1" Bl +dx B+ 4 dy x B_SHEX B".

Here B is the base, or radix, and the factor 0.dd, ... d, —shown in “normalized” form—is called the

significand. The integer n is the exponent. The symbols d are the digits; they run from 0 to 3-1. In
normalized form, the digit following the period (binary point in base-two notation) must be non-zero.

Since we are using the binary system, =2, the digits are O or 1. This means the digit just after the
binary point must be 1, hence there is no need to actually record it. By omitting it, we can get one
extra digit of precision in the significand. The 32-bit IEEE representation is exhibited in the table

below
bit #: |31|30| mm |22 i 0
contents: | S exponent Si gnl ficand (24 bi tS)

and the corresponding 64-bit representation is

bit #: |63|62| mm |51 i 0

contents: | S | exponent significand (53 bits)

6. ANSIIEEE 754-1985

12 Floating point arithmetic

We see that the 32-bit representation has a sign bit (0 for positive, 1 for negative) 8 bits that hold an
exponent, leaving 23 bits for the significand. Thus the 32-bit representation actually has 24 significant
bits, equivalent to about 7 decimal digits. The 8-bit exponent holds integers in the range from 0 to
255. However it is customary to offset the exponent by subtracting 127 from it. The exponents thus

run from -127 to +127, equivalent to a dynamic range of 1078

The 64-bit floating point representation reserves 11 bits for the exponent and 52 for the significand,

giving about 16 significant (decimal) figures of precision, and a dynamic range of 20 = 10308,

Exercise

The numerical co-processor units in common use today maintain 80-bit internal registers for their
operands. This provides 15 bits for the exponent, and 64 for the significand (of which 3 comprise the
“guard”, “round” and “sticky” bits used within the fpu for error correction). That is, assuming 61 bits
of precision, how many (decimal) significant figures can be represented, and what is the dynamic
range’

End of Exercise

In the Intel family of processors and their clone/competitors it is unwise in general to work with 80-bit
numbers since the idiosyncrasies of memory organization impose significant time penalties for moving
such numbers to/from the main memory. The 32- and 64-bit floats, on the other hand, move in 1
machine cycle (1 “clock”) or less’.

Arithmetic

When we multiply two floating point numbers, we simply multiply their significands, possibly
(re)normalize the result (depending on whether the leading bit is 1 or 0) and add the exponents.
Similarly, to divide a float by another we perform an appropriate integer division, renormalize the
result if necessary, and subtract the exponents.

Addition and subtraction are considerably more difficult, however. We have to denormalize the
addend (or subtrahend) that is smaller in absolute value(that is, we shift its binary point leftward),
so that the exponents of the two numbers are the same. Then we add the significands, renormalize
and adjust the exponent. There is usually less work in addition than multiplication so multiplication
(or division) has traditionally been much slower than addition or subtraction. However, recent
advances in technology have led to hardware that executes floating point multiplication about as fast
as floating point addition. (Division, however, is many times slower, hence should be avoided.)

Roundoff error

7. Lessis possible because the Pentium chips incorporate several processors that operate—sometimes—in
parallel, thereby achieving “superscalar” performance.

PHYS 551 Computational Methods of Physics 15
Chapter 1 Chapter 1: Arithmetic on digital computers

Since digital arithmetic is performed with registers and memory cells of finite length, bits inevitably
“fall off” the ends of the result register. Thus a sequence of arithmetic operations can lose precision
unless intermediate results are stored in double-length registers. The problem is exacerbated in
floating point arithmetic. When we multiply two numbers, an “exact” significand will require twice
as many bits as either of the multiplicands. But they only the same number of bits is available to store
the result, so information is inevitably lost.

Two conventions are employed for rounding: chopping, in which all bits from bit s (inclusive) are
dropped; and rounding, in which one adds 1 to bit s and then chopss.

Let us represent floating point arithmetic operations in large bold text, and “exact” ones in ordinary
text. Then

aop b = (aop b) (1+9),

meaning that the result of the floating point operation is the true result times some factor not quite
unity, representing roundoff error. Generally dis of order of the numerical precision for the operations
of multiplication and division. However, suppose we subtract two numbers (of the same sign) that
are close in magnitude. The result will be far less precise than either of the subtrahends. For example,
subtract® 1.0010000; from 1.0100000, . Each is known to 8 significant figures, but the result, The
result is 0.0090000, , which is known only to 5 significant figures. In other words, one operation has
lost 3 significant figures of precision!

What can we do to save ourselves from this disaster? The answer in general is, “Not much.” That is,
when we perform certain types of calculation using floating point arithmetic, wherein many subtrac-
tions of numbers that are close in size may be expected, then we must expect drastic losses of
precision—perhaps to the point of vitiating the calculation. Fortunately when such awful things
happen, there is usually a reason (no, I do not mean you have offended the gods). The reason can
almost always be stated in mathematical terms—a matrix is ill-conditioned, an equation has many
closely spaced roots, and so forth. But such conditions usually arise from some aspect of the physical
problem the equations are intended to represent, and can often be stated in physical terminology.
When that is the case it is usually possible to see how the problem must be restated to avoid
catastrophic roundoff. Only rarely does it pay in such instances to try to solve the original problem
by sheer brute force, i.e. by extending the precision to so many significant figures that an answer of
acceptable precision can still be obtained.

8. In decimal rounding one adds 5 to the s’th digit and then chops.

9. The subscript “d” means we are using decimal notation.

14

Floating point arithmetic

