PHYS 551 Computational Methods of Physics 145
Chapter & Ordinary differential equations

Ordinary differential equations

To motivate the solution of ordinary differential equations, consider the problem of aiming an early
siege gun firing a round shot, as shown below:

O L, & %l w L EF

i e e e g T L
The cannoneer was forced to estimate the effects of wind, Coriolis force and air resistance. However,
we—the heirs of Newton—can calculate the angle of inclination and the aiming point, needed to hit
a target with any precision. Of course too much precision is useless if we cannot control the amount
and quality of the gunpowder charge, or aim with equivalent precision, so we will also be interested
in the sensitivity of the answer to the initial conditions of the problem.

We set up local coordinates at a point on
the Earth’s surface as shown to the right.
Assuming one is in the northern hemi-
sphere, the x-direction is due East; the
y-direction is due North; and the z-axis
points straight out from the Earth’s center.

The equations of motion are Newton’s
Second Law, but we wish to include air
resistance and Coriolis force. The latter is
a pseudoforce that arises from the Earth’s
rotation—that is, the cannon is actually
being fired in an accelerated frame; the
effective equation of motion for the projec-

tile is therefore'

1. See,e.g.,].V. Noble, Lectures on Theoretical Mechanics.

146

% = —gZA— Moo + 5)(8?)(6 H+ ZJXEE
We hare modded the ar fridion a proportiond to thesqua e of thevdodty, since we expect

visaosity to beunimportaent. T he coeffident I is

=L
r=--XAPR)

wheep is thedr density & dtitude z, A is the aoss-sediond aeaof the projedile X is the
“shgpefadtor” of theprojectile (about 0.3 for asphere) andmis theprojedtilemass. T heEath’s
angula vdodty, expressedin locd cordnass, is

d =Q %Acose + zAsinGEL
whee 0 is the conventiond l&itude (e messured from the Equator). As usud, gis the
acdedion of gaiity a theEath’s surfaog, aout 9.8 m/sec? andv = IvVl.

For terestrid dstanass and the muzzle vdodties goproprigteto atilley, we may neged the
tem quar&ic in the Eath’s engula vdodty Q. (Ched this yoursdf, for muzzle speacs
compa edewith that of sound, andranges upto 10 km.) T hus thesystem of equations wemust
solveis

dv,

— = - + i -

I Mve, + 2Q H’V sin@ — v, COSGH
SOR 2Q v, sin®

o - vy v, sin

d_ fve, +2Q)

T - ¢ v, v, cosB .

This is a couped system of nonlinea first-orde ordnay dffaentid equations. They ae
nonlinear because thevdodties gopear quadraicdly; they aefirst-arde because only thefirst
deivaiveof thevdodty gopeas in eech equation.

Tosdvetheamingprobem, weshdl needto cdaulaetheprgedil €s trgedory, possiby many
times, changngtheinitid dredion and devation & necsssay to dscove those predsevaues
that will causetheprojediletointersect theta get coordinaes within thedesired aocuragy. T his
goproah is, not surprisingy, cdled the*“shooting” method. Tofindthetrgedory weshdl solve
for the(vetor) vdoaty, then integ aethis tofind theaoor dnetes e afundion of—say—time

To solve for the desired dredion and devaion we might minimize the distance from the
coordinaes of thepoint of amto thoseof theend of thetrgedory:

AW, x) = Haim - ;‘impac(l“’ X)| .

T his procedure has an advantege ove trying to find the root: if the range of the gun is not
suffident toreach theta gat, theminimizer will reved this.

PHYS 551 Computational Methods of Physics 147
Chapter & Ordinary differential equations

Beforewe can begn to solve our pa adigmatic problem, howeve, we nesd to be adeto solve
first-orde ordnay dffeentid equations. T his is thesuljeat of thenext settion.

1. Eirst-order equations
Wewish to solvethefirst-order gened dffegentid equation

i= =10)

In general we can only solve Eq. 1 approximately, starting from the value of x—call it x;,—at some
initial time t; , then advancing the time by small increments dt = h, using the differential equation
itself to give us x(¢t + h) given x(¢) .

For example, we could expand in Taylor’s series’

2
x(t+h) = x(t) + hx(t) + h?k(t) + ... 2)

and keep only the lowest order terms:

x(e+h) = x(0) +hfix(), 1) - (3)

2. Simple-minded methods
We shall define

df
X, = x(0) 5

in terms of x,, the approximation Eq. 3 becomes

xn+1 = xn + hf(xn’ t) . (4)

We now ask whether this approach can yield an incorrect result. The answer is “Certainly!”— Eq. (4)
can become unstable if h is too large. Consider the equation

x = —Ax

where A is a constant. We know the solution of this equationis x(t) = x(0) ¢ But if we turn it into
a difference equation,

Xpe] = X, B —AhE,

the solution of the latter is

X, = XOB —Ath.

2. See,eg., HMF §3.6.1.

148 Quadrature formulas

In other words, the solution becomes oscillatory (and incorrect!) if Ah > 1.

The obvious cure is to keep h small—that is, to integrate with many time steps. Unfortunately, the
computer being used for the integration may be too slow to permit an adequately fine subdivision of
the interval, so that the numerical solution will not adequately approximate the actual solution. Speed
of evaluation can be crucial in the folllowing circumstances:

» the problem may require solving many such equations;

 the problem must be solved in real time, as in weather prediction, process control, on-line data
analysis or missile interception;

¢ the function f(x, t) may be expensive to evaluate.

If the practitioner’s aim is to obtain results in a finite time, the simple-minded algorithm must be
replaced by one that permits coarser time steps without compromising precision.

3. Quadrature formulas

Suppose we wished to base a solution on a numerical quadrature formula—say Simpson’s rule:

t+2h

@+ [&)R

x(t +2h)

0

BHRO G+ 4730+ B e+ h+ R0+ 20,0+ 200

then we would obtain the (implicit) formula

h
Xn+1 = Xn-1 + 5 %n—l + 4fn + fn+1%’

Suppose we try this on

x = —Ax:
we have
H hAQ _ hAO 4hA
Xn+1 + TD = Xp-1 - 7|:| - 3 Xp
O 0 O O
This is a linear difference equation with constant coefficients, whose solution may be sought in the
form
x, = ap’;

we find a quadratic equation for 3, hence there are two roots:
-1
ARD O 2Ah Y7 LA D0 1-Ah
= — el —_— =
P @”3%% 3 2V ST B DA

The first of these, for small enough step-size h, is smaller than unity and therefore leads to the solution
we seek, namely a decreasing exponential. The second root exceeds unity in magnitude and leads to

PHYS 551 Computational Methods of Physics 149
Chapter & Ordinary differential equations

a growing, oscillatory term. This is rather unfortunate, since the limitations of numerical precision
on digital computers with finite registers guarantees the presence of some small amount of the growing
solution. That is, after a finite number of integration steps the solution is guaranteed to contain an
error that continues to grow.

Thus we shall have to take care that methods we introduce for numerical integration of differential
equations do not introduce instabilities through inadvertance.

4. Calculus of finite differences

In discussing numerical integration it is useful to introduce the difference operator A defined as

df
Dx, = x4 — X,

Now clearly,

df 2 12
Af(e) = fe+h) - fi) = h% + %jjzf 4

where we have expanded f(t + k) in Taylor’s series about t. Formally, if we define an operator

d
D=
de
we may write the Taylor’s series as an exponential:

_pdf LR o
Af_hdt+2!dt2+”'_H —IBf

or abstracting to a relation between operators,

A=P -1 (5)

or

D= %Iog(l +4). (©6)

150 Ruhge-Kutta method

5. Runge-Kutta method

One standard class of methods that had fallen into distavor but now are popular again, are the

Runge~Kutta3 algorithms. The algorithms can be classified according to order n—that is, if h is the

step size, the error at each step will be O(h).

Second-order Runge-Kutta
From Eq. 6 we find

Dx = %log(1+A)x = flx, t)

or
O A 0
m—7+...[b<=hf.
O 0

Keeping only the second difference term A%/2 we may write this as
~ Lo o 1 _ 1
Ax = hf + ZA x = hf + 2A(hf) =5 Hlf(x,t) + hf(x+hf,c+h)H.

This is, in fact, the second order Runge-Kutta quadrature formula®
k = hf(x,,nh)

N =% S Rk + B+ O(). @

We can check this formula by expanding in Taylor’s series and comparing terms. Clearly,

k + hf(x+k t+h) = 2hf + hkg + hzg—{ = 2hx + K2X + O,
X

hence

4 R
X4y = x(nh+h) = x, +hx, +—=x, ;

2
that is, the Runge-Kutta x,,,; agrees with the Taylor’s series expansion to O(h3) .
It is worth noting that a formula® equivalent to Eq. 7 is

X41 =X, + hflx,+k/2,t +h/2);

that is, as we shall see below, there is a certain latitude in choosing the combinations of derivatives
and function values, as well as in the intermediate values of the independent variable.

3. HMF, p89¢.
4. HMF, §25.5.6
5. HMF, §25.5.7

PHYS 551 Computational Methods of Physics 151
Chapter & Ordinary differential equations

FALSE [F]
Nurmerical solution of first-order ordinary differential equation by 2nd order
Runge-Kutta algorithm followi ng Abramowitz & Stegun p. 896, 25.5.6

Sol ves dx/dt = f(x,t)

This is an ANS Forth program requiring FLOATI NG and FLOATI NG EXT
wordsets. This program assunmes a separate floating point stack.

For sinplicity and clarity, the programuses a FORrul a TRANs! at or
Exanpl e
fnb (f: xt -- t"r2*exp[-x]) fA2 FSWAP FNEGATE FEXP F*
use(fnb 0e0 0e0 5e0 0.1e0)runge
[THEN]

MARKER -runge
I NCLUDE ftranlll.f \ use FORmul a TRANsI at or

\ multiple variable definitions
fvariabl es (n—> 0 DO FVARI ABLE LOOP ;

5 fvariables t h x tf xk

v: fdumy \ dummy function name
X'’ \ integration step
f" xk = h*fdummy(x,t)" \ conpute k
f* t = t+h" \ increnent t
f* xk + h*fdummy(x+xk,t)" F2/ (f: —dx)
x F@ F+ X F! \' X = x + dx ;
di spl ay CR t F@ FS. 5 SPACES x F@ FS. ;

done? t F@ tf F@ F> ;

) runge (xt =5 (f: x0t0tf h —)

defines fdummy \ vector fn_nane
tf It Fl x F hF \ initialize variables
BEG N displ ay X’ \ indefinite | oop

done? UNTIL ;

152 Runge-Kutta method

A program for 2nd-order Runge-Kutta integration (in Forth) is shown on the preceding page. As an
example we solve numerically the equation:

x=t'e™

with the initial condition x(t=0) = 0, whose exact solution is

x(t) = log,(1 + %ﬁ).

To run and compare with the exact solution, modify the word di spl ay as follows:

di spl ay CR t F@ FS. 5 SPACES x F@ FS.
5 SPACES f" In(1+t"3/3)" FS. ;

The resulting output is shown below:

t X exact t X exact

0. 00000E-1 0. 00000E-1 0. 00000E-1 2. 60000EO 1. 92543E0 1. 92551E0
1. 00000E-1 5. 00000E- 4 3. 33278E-4 2. 70000E0 2. 02287E0 2. 02300E0
2. 00000E-1 2. 99675E-3 2. 66312E-3 2. 80000EO 2.11817E0 2. 11834E0
3. 00000E- 1 9. 45945E- 3 8. 95974E-3 2. 90000EO0 2. 21133E0 2. 21153E0
4. 00000E-1 2.17714E-2 2.11090E- 2 3. 00000EO 2. 30236E0 2. 30259E0
5. 00000E- 1 4.16399E-2 4. 08220E-2 3. 10000E0 2.39129E0 2. 39154E0
6. 00000E-1 7. 04869E- 2 6. 95261E- 2 3. 20000E0 2.47817E0 2. 47844E0
7. 00000E-1 1. 09341E-1 1. 08256E-1 3. 30000E0 2. 56305E0 2. 56333E0
8. 00000E- 1 1. 58756E-1 1. 57573E-1 3. 40000EO0 2. 64597E0 2. 64627E0
9. 00000E- 1 2.18777E-1 2.17528E-1 3. 50000E0 2.72700E0 2. 72731E0
1. 0O0000EO 2.88963E-1 2. 87682E-1 3. 60000EO 2. 80619E0 2. 80651E0
1. 10000E0 3. 68461E-1 3. 67186E-1 3. 70000E0 2. 88360E0 2. 88393E0
1. 20000E0 4.56125E-1 4.54890E-1 3. 80000EO 2. 95930E0 2. 95962E0
1. 30000E0 5. 50634E-1 5.49469E- 1 3. 90000EO 3. 03333E0 3. 03365E0
1. 40000E0 6. 50614E-1 6. 49544E-1 4. 00000EO 3. 10575E0 3. 10608E0
1. 50000E0 7.54732E-1 7.53772E-1 4. 10000EO0 3. 17663E0 3. 17696E0
1. 60000EO 8.61759E-1 8. 60919E-1 4. 20000EO0 3. 24601E0 3. 24634E0
1. 70000E0 9. 70612E-1 9. 69895E-1 4. 30000EO 3. 31395E0 3. 31427E0
1. 80000EO 1. 08036E0 1. 07977EO 4. 40000EO0 3. 38049E0 3. 38081E0
1. 90000EO0 1. 19025E0 1.18977EO0 4. 50000E0 3. 44569E0 3. 44601E0
2. 00000EO 1. 29965E0 1. 29928E0 4. 60000EO0 3. 50960E0 3. 50991E0
2. 10000E0 1. 40808E0 1. 40781E0 4. 70000EO0 3. 57225E0 3. 57256E0
2. 20000EO0 1. 51516E0 1. 51498E0 4. 80000EO 3. 63369E0 3. 63400E0
2. 30000E0 1. 62061E0 1. 62051E0 4. 90000EO 3. 69397E0 3. 69427E0
2. 40000E0 1. 72423E0 1. 72419E0 5. 00000EO 3. 75312E0 3. 75342E0
2. 50000E0 1. 82586E0 1. 82589E0 ok

PHYS 551 Computational Methods of Physics 193
Chapter & Ordinary differential equations

Fourth-order Runge-Kutta
The key to deriving Runge-Kutta formulas is to write the difference operator as a linear combination
of the first derivative values of the function:

M
Xprl T X, F Z Wy ks (8)
s=0

where
s—1 O
ks = hfljn-l-zﬁsvkr’t-l-ashlj
O = O
and the coefficients w , O, and 3, can be determined by expanding both sides of Eq. 8 and comparing

term-by-term. This leads, in general, to fewer equations than unknowns, hence the available degrees
of freedom may be chosen either to minimize some bound on the error term, or with some other
purpose.

The fourth-order Runge-Kutta formula we shall use here, accurate to O(h°), is

k k, k k
xn+1:xn+gl+?+?3+g4)

where
0k O
ki = hflx,,nh) k; = hfld, +—5,nh+=0
0" 2 N

k -hD +h h+bD ks = h +ky,nh+h
7 f%n 2’n ZE 4 — f(xn 3,71)‘

We leave it as an exercise to show that the preceding formulae are equivalent to a Taylor’s series
expansion to the requisite order; as well as to solve the same example equation over the same range,
comparing it with the exact solution. To convert the program for second-order Runge-Kutta to one
using the fourth-order formula Eq. 6, we need alter but one subroutine (of course we must also allocate
space for the extra intermediate variables):

X’ \ integration step (note: h2 = h/2)
f" xk1l = h2*fdumy(x,t)" \ conpute k1
f" t = t+h2" \ increnent t by a half-step
f" xk2 = h*fdummy(x+xk1,t)"
f" xk3 = h*fdumy(x+xk2/2,t)"
f*" t = t+h2" \ increnent t by a half-step
f" xk4 = h2*fdumy(x+xk3, t)"
f" x = x + (xkl + xk2 + xk3 + xk4)/3"

The same example, run with this algorithm, gives the results shown on the next page. We see that
the numerical integration now agrees with the exact result to six (6) significant figures, over the entire
range, in contrast to the second-order formula, which—with this step size—yielded significant

154 Runge-Kutta method

t X exact
0. 0O0000E-1 0. 00000E-1 0. 00000E-1
1. 00000E-1 3.33281E-4 3.33278E-4
2. 00000E-1 2. 66312E-3 2. 66312E-3
3. 00000E-1 8. 95975E-3 8. 95974E-3
4. 00000E-1 2. 11090E- 2 2. 11090E- 2
5.00000E-1 4.08220E-2 4.08220E-2
6. 00000E- 1 6. 95261E- 2 6. 95261E- 2
7. 00000E-1 1. 08256E-1 1. 08256E-1
8. 00000E-1 1.57574E-1 1.57573E-1
9. 00000E-1 2.17528E-1 2.17528E-1
1. 00000EO 2.87682E-1 2.87682E-1
1. 10000E0 3.67187E-1 3.67186E-1
1. 20000E0 4.54890E-1 4.54890E-1
1. 30000E0 5.49470E-1 5.49469E-1
1. 40000E0 6. 49544E-1 6. 49544E-1
1. 50000E0 7.53772E-1 7.53772E-1
1. 60000EO0 8. 60919E-1 8.60919E-1
1. 70000E0 9. 69895E-1 9. 69895E-1
1. 80000EO 1.07977EO0 1. 07977EO
1. 90000E0 1.18977EOQ 1.18977E0
2. 00000E0 1.29928E0 1. 29928E0
2. 10000E0 1.40781E0 1. 40781E0
2. 20000E0 1. 51498E0 1. 51498E0
2. 30000E0 1. 62051E0 1. 62051E0
2. 40000E0 1.72419E0 1. 72419E0
2. 50000E0 1. 82589E0 1. 82589E0
2. 60000E0 1. 92551E0 1. 92551E0
2. 70000E0 2. 02300E0 2. 02300E0
2. 80000EO 2. 11834E0 2. 11834E0
2. 90000E0 2. 21153E0 2. 21153E0
3. 00000EO 2. 30259E0 2. 30259E0
3. 10000E0 2. 39154E0 2. 39154E0
3. 20000E0 2. 47844E0 2. 47844E0
3. 30000E0 2. 56333E0 2. 56333E0
3. 40000EO0 2. 64627E0 2. 64627E0
3. 50000E0 2. 72731E0 2. 72731E0
3. 60000EO0 2. 80651E0 2. 80651E0
3. 70000E0 2. 88393E0 2. 88393E0
3. 80000EO 2. 95962E0 2. 95962E0
3. 90000EO 3. 03365E0 3. 03365E0
4. 00000EO 3. 10608E0 3. 10608E0
4. 10000EO0 3. 17696E0 3. 17696E0
4. 20000E0 3. 24634E0 3. 24634E0
4. 30000EO0 3. 31427E0 3. 31427E0
4. 40000EO 3. 38081E0 3. 38081E0
4.50000E0 3. 44601E0 3. 44601E0
4. 60000EO 3. 50991E0 3. 50991E0
4. 70000E0 3. 57256E0 3. 57256E0
4. 80000EO 3. 63400E0 3. 63400E0
4. 90000EO 3. 69427E0 3. 69427E0
5. 00000EO 3. 75342E0 3. 75342E0

ok

PHYS 551 Computational Methods of Physics 155
Chapter & Ordinary differential equations

disagreement in the fourth or fifth significant figures. In fact, setting the floating point display to ten
significant figures reveals that the calculated and exact results of the fourth-order Runge-Kutta
formula disagree by a few parts in 10",

Implicit Runge-Kutta integration
A vaidion on the expidt Runge K uttadgorithm disaussed aoveis theimdiat agorithme.
For example in thesecond-orde formulag ven ebove supposex,, + k, werergdaosd by x4 :
k = hf(x,,nh)
1
%t = %+ [+ b, nh+ B+ OR).

and the resulting (transcendental) equation solved for x,,; by—say—regula falsi. Since we have

already written a regula falsi program, we can apply it here to get the algorithm shown diagrammatically
below:

Jrunge
initial ize \ get h, tf, t0, x0

QX BEGIN

xk = hf(x,t) \ integration step
SOLVE: x' = x + Dk + hf(x',1)1/2
display

done?

o UNTIL

The task of implementing this algorithm is left as exercise.

Now why would one bother with an implict Runge-Kutta scheme? The answer is that when the
differential equation becomes singular; or when the equation is “stiff”, the implicit scheme will not
develop instabilities. That s, it permits us to obtain a solution without making the step size excessively
small.

6. See,e.g., A. Ralston, A First Course in Numerical Analysis (McGraw-Hill Book Company, New York,
1965) Ch. 5. Implicit methods increase the stability of numerical solution, compared with explicit meth-
ods. The formula below is exact for second-order polynomials. The etror is of the same order as the ex-
plicit formula, but the coefficient may be smaller.

156 Predictor-corrector methods

©. FPredictor-corrector methods

The fourth-order Runge-Kutta method requires four evaluations of the function f(x, t) per integration
step. This can be unnecessarily time-consuming. A second disadvantage of Runge-Kutta methods is
that they provide no estimate of how well they are doing; that is, if the precision is too great (because
the function is changing only slowly), it would be advantageous to increase the step-size. Conversely,
if the precision is worsening, a decrease in step-size is in order. The Runge-Kutta method is both
stable and easy to program, however, since it integrates forward from the current value x,, . This is

why it remains popular.

Another genre of methods, the so-called predictor-corrector algorithms, has been studied by many
authors. Its advantages are first, that (in a fourth-order procedure) f(x, t) is evaluated only twice per
integration step; and second, that two different algorithms (the predictor and the corrector) are
employed, hence they check each other. That is, comparing two different algorithms provides a
running estimate of precision, that can be used to adjust the step-size for optimal results. The chief
drawback of predictor-corrector methods is that they are more difficult to program than Runge-Kutta.

Like all numerical integration algorithms, the predictor-corrector approach is based on the integral
form of the differential equation,

x(t+) = x(t) + J-Hmdsa'((s) . (10)

The trick is to use one quadrature formula for the predictor and another for the corrector. The two
formulas must, of course, have error terms of the same order. Thus consider a second-order procedure
based on closed and open Newton-Cotes quadrature rules:

X,y * % %n_l + kn% + O(h3) (open Newton~CotesY) (11a)

Xn+1

Xn+1

x, + %Hn + X +IH+ O(h3) (trapezoidal rule®) (11b)

The first thing we ought to examine is the stability of these procedures. Consider again our decaying
exponential,

x = —Ax;

the open Newton-Cotes formula leads to the difference equation

3hA
Xpel = Xy — T %n—l +xn%

7. HMF, p. 886, §25.4.21
8. HMF, p. 885, §25.4.2

PHYS 551 Computational Methods of Physics 157
Chapter & Ordinary differential equations

whose solution is
—_— n
x, = ap",
where

3Ah 3Ah
ey B pos0

For |Ah| <<1 we find one real root,

and two complex conjugate roots

Ah +;
B3 = H o s,
O O
That is, the formula is unstable because in addition to the decreasing solution (the one that leads to

x = x(0) ¢, there are two that increase more slowly, as well as oscillate. (On the other hand, if
A had the opposite sign, corresponding to an increasing exponential, the two complex roots would be

smaller than unity in magnitude so the errors would die out.)

What about the closed Newton-Cotes formula? Here the secular equation is
Ah Ah

+—PB=1-—
O 20 Z

with one root, B = 1 — Ah. This is a well-behaved equation.

With predictor-corrector algorithms the best strategy is to choose the predictor to be the equation
with possible instability, and the corrector to be stable. Thus we choose the open Newton-Cotes
formula for the predictor and the trapezoidal rule for the corrector. We leave the task of implementing
the predictor-corrector algorithm to the student.

7. Second order equations
Second order equations like
x + flx,x,t) =0

can be put in the form of two first-order equations and then solved by applying a first-order differential
equation solver to each. Let

df
y =X
then we have the system
y + flxy, 1) =0

x —y=0.

158 Second order equations

Many of the second order differential equations encountered in practice are linear but have
non-constant coefficients. Such equations can be transformed so as to have no first-derivative term,
that is, to have the form

x + F(x,t) = 0.
And of course, some nonlinear equations already have this form.

there are special methods for second-order equations (linear or nonlinear) that lack a first-derivative
term. The best-known of these is the Numerov algorithm9:

4
Azxn—l = X T 2Xn t X T th + %XG) + ...

hz AZ k-n—l = 5c.n+1 - an + 5c.n—l = _hz Eﬂ:‘nﬁl - 2Fn + Fn—l%: _h4 X(4)

or in other words,

2
Xptl — 2xn + Xp-1 = _th h |:Fn+l - 2Fn + Fn—l%' (12)

n_ﬁlj

If the differential equation is linear and of second order,

x = f)x + g(t), (12")

then Eq. (12") can be solved explicitly for the next value, x,,; :

O K @ K2

AZE 0 - —f_,mM= h +hg +—=Ag + OR) (13)
Dn—l 0 12 n_ID]:|~ nXn & 12 8n-1 :

The error is O(h®) ; the price is that one needs the first two values of x(t), xpand x;, in order to procede
with this algorithm. The fact that one also needs g, ,; at every step imposes no extra computational

burden since it merely gets computed one step earlier than it would have been.
On the following page is the numerical solution of the equation

x+x=0
with initial conditions

xg = 0,xy = Land h=0.1

The exact solution is, of course, sin(t) . The Numerov algorithm definitely yields the advertised
accuracy (i.e. to 1 part in 106).

9. B.V.Numerov, Mon. Not. Roy. Astron. Soc. 84 (1924) 180; ibid., 592.
See also R.W. Hamming, Numerical Methods for Scientists and Engineers (McGraw-Hill Book Co., Inc.,
New York, 1962) p. 215.

PHYS 551
Chapter &

t
. 00000E- 1
. 00000E-1
. 00000E-1
. 00000E-1
. 00000E- 1
. 00000E- 1
. 00000E-1
. 00000E-1
. 00000E-1
. 00000EO
. 10000EO
. 20000EO
. 30000EO0
. 40000EO0
. 50000EO0
. 60000EO
. 70000EO
. 80000EO
. 90000EO0
. 00000EO
. 10000EO
. 20000EO
. 30000EO0
. 40000EO0
. 50000EO0
. 60000EO
. 70000EO
. 80000EO
. 90000EO0
. 00000EO
. 10000EO
. 20000EO
. 30000EO
40000EO
50000EO0
60000EOD
. 70000EO
. 80000EO
. 90000EO0
. 00000EO
. 10000EO0
. 20000EO
. 30000EO0
. 40000EO
. 50000EO0
. 60000EO
. 70000EO
. 80000EO
. 90000EO
. 00000EO
. 10000EO0

AP NWAUIUON®®ONOOO©O©OOOOOODRDNINDUTAWNERO©

Computational Methods of Physics

x(t)

. 98334E- 2
. 98669E- 1
. 95520E-1

89418E-1

. 79426E- 1
. 64642E-1
.44218E-1
. 17356E-1
. 83327E-1
.41471E-1
. 91207E-1
. 32039E-1
. 63558E-1
. 85450E- 1
. 97495E-1
. 99573E-1
. 91665E-1

73847E-1
46300E-1
09297E-1

. 63209E- 1
. 08496E- 1
.45705E-1
. 75463E- 1
.98472E-1
. 15501E-1
.27379E-1
. 34988E- 1
. 39249E-1
.41119E-1
. 15800E- 2
. 83748E- 2
. 57746E-1
. 55542E-1
. 50784E-1
.42521E-1
. 29837E-1
. 11858E-1
.87767E-1
. 56803E-1
.18277E-1
. 71576E-1
. 16166E-1
.51602E-1
. 77530E-1
. 93691E-1
. 99923E-1
. 96164E-1
. 82452E-1
. 58924E-1
. 25814E-1

AP NWAUIUION®®OOOO©O©O©OOOOODRDINDUTAWWNERO©

sin(t)

. 98334E- 2
. 98669E- 1
. 95520E-1

89418E-1

. 79426E- 1
. 64642E-1
.44218E-1
. 17356E-1
. 83327E-1
.41471E-1
. 91207E-1
. 32039E-1
. 63558E-1
. 85450E- 1
. 97495E-1
. 99574E-1
. 91665E-1

73848E-1
46300E-1
09297E-1

. 63209E-1
. 08496E- 1
.45705E-1
. 75463E-1
.98472E-1
. 15501E-1
. 27380E-1
. 34988E- 1
. 39249E-1
.41120E-1
. 15807E- 2
. 83741E- 2
. 57746E-1
. 55541E-1
. 50783E-1
.42520E-1
. 29836E-1
. 11858E-1
. 87766E-1
. 56802E- 1
.18277E-1
. 71576E-1
. 16166E-1
.51602E-1
. 77530E-1
.93691E-1
. 99923E-1
. 96165E-1
. 82453E-1
. 58924E-1
. 25815E-1

Ordinary differential equations

ok

159

160 “Otiff” equations

Next we investigate the stability of the Numerov algorithm. Suppose the inhomogeneous term
vanished and the function f(t) were constant: then letting

N
1 - Rhf/12
and
§ g 0
X, = x, Bl “T fn%
we find that the difference equation has the solution X, = o B" where the two roots of the secular

equation are

B=1+d/2 +aVi+d/4 .

® i.e. its magnitude is unity. and the solution is

If a* < 0 as in the preceding example, then B = '
asymptotically sinusoidal. If, on the other hand, a* > 0, the solutions are decreasing and increasing
exponentials, approximating

x(t) N ei t\/f

in the limitash — 0.

Thus we may expect that if we must integrate in the positive-t direction, and we are hoping for a
solution with decreasing exponential behavior, sooner or later any initially small component of the
increasing solution will win, at which point the accuracy will decrease radically.

8. Iotiff” equations

Certain differential equations can be extremely difficult to solve because they embody several quite
different time scales. An example is the equation

X = 400(1-¢M x = 0, (14)

in which the two time scales are 1 and 1/v400 = 0.05 . Such equations were first encountered by
engineers designing systems containing several both soft and stiff springs and the name “stiff” has
stuck.

Suppose we use any of the algorithms we have developed to integrate Eq. 14 to the right—that is, in
the direction of increasing t. For t > 1 we see the equation has approached the behavior

Xx —400x = 0

+20¢

whose solutions are ¢~ . Our numerical solution will rapidly approach the exponentially growing

solution, no matter what initial conditions we impose. That is, no matter how fine a step size we

PHYS 551 Computational Methods of Physics 161
Chapter & Ordinary differential equations

2

choose, if we desire the solution that asymptotically falls as e Ot we are bound to be disappointed

since it will be swamped by the growing solution.

There are several ways to handle such difficulties. In the present case, we can start the solution at
¢ 2% for some large ¢ and integrate leftward. The desired solution is now the growing one, and the
undesired one dies out exponentially quickly. The computed values can then be renormalized
(because the equation is homogeneous) to give any desired (generally non-zero) value att =0 .

This method does not always work, hence it is worthwhile to have some additional methods that can
be tried when it fails. Acton™® suggests the Riccati transformation: let

x = n()x;
then equations of the form
x = f(t) x
are transformed into two first-order equations,
N+’ = f0)
and
x = n@x,

one of them nonlinear. The second can be solved by a simple quadrature:

® = DI L (v)D

t t t

X exp| df n

whereas the first is relatively smooth.

A second technique for solving stiff equations in which the undesired solution diverges is based on
the following idea: if we integrate our example in the direction of increasing t we are guaranteed to
obtain the “wrong” solution, w(t). Since we are dealing with a second order linear differential
equation, we can obtain the second solution (the “right” one, ()) by the substitution

r(r) = w(e) u(t)
which (since w(t) is a solution) gives
uw + 2uw =0

or (within a multiplicative constant)

u(t) :L de wz(lt,)

Thus we may write

10. See, e.g., F.S. Acton, Numerical Methods that Work (Math. Ass'n of America, Washington, DC, 1990),
p. 148ft.

162 “Otiff” equations

> 1
() = Aw@) [df (15)
))-[W)
where A is adjusted to give the desired initial value, r(0) . This method requires only that we integrate
rightward until w(t) attains its asymptotic behavior. Obviously this will occur at some finite value of

t. If we save the values w, = w(nh) so attained, it is straightforward then to construct the desired
solution (from right to left) by quadrature.

Not all stiff equations are stiff because of divergent solutions: an example is the system'"

xO_ 0998 1998 Ok [(16)

HH™ Ho99 —1999 HE B

with initial conditions x(0) = 1 and y(0) = 0. It is not difficult to determine the exact solutions:
X = 2t — poloo0e

— -t —1000 ¢
e .

y=-e +

The disease of the above system, from the numerical point of view, is that although the rapidly
decreasing solution disappears almost instantly, the step size h required for numerical stability, in the
usual integration schemes, will be determined by the short time scale 0.001 rather than the slow scale,
1.000 . Thus, the third approach, advocated by Press, et al.t is an implicit scheme based on (here
A is a matrix and x a vector)

x = “Ax
so that
Xpe] = X, T hxpyy = x, — hA X -

To solve we write

-1
Xn+] = B + hAH Xn 5
if the matrix A is positive-definite, then the inverse matrix has eigenvalues that are always smaller

than unity, hence the method is stable even for large step size (although it may lose accuracy in that
case). Let us apply it to the case

_ 3998 -1998 O

A= 0
999 1999 5

whose eigenvalues are 1 and 1000, respectively. The inverse (1 + hA)_1 is then given by

11. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Engle-
wood Cliffs, NJ, 1971).

12. W.H. Press, B.P. Flannery, S. Teukolsky and W.T. Vetterling, Numerical Recipes (Cambridge U. Press,
Cambridge, 1986), p. 572ff.

PHYS 551 Computational Methods of Physics 163

Chapter & Ordinary differential equations
0 1+199% 1998h 0
4+ paft = O+ 1001+ 100Ch* 1+ 1001h + 1000k
H “H o -999n 1-998h H
H +1001h +1000h* 1+ 1001h + 100Ch* H

However, although Press, et al. recommend this approach, simple experiments indicate that it loses
a great deal of accuracy, even for very small step size. The BASIC program given below demonstrates
this clearly.

solution of the "stiff" equations
' dx/ dt 998 * x + 1998 * y
’ dy/ dt -999 * x - 1999 * y
’ by the inverse nethod (Press, et al., p. 572 ff
DEFDBL G H, XY
DEFINT K CLS h = . 0001
DET =1 + h * (1001! + 1000! * h)
C=1(1+ 1999! * h) / DET: D= 1998! * h / DET
E=-999! * h/ DET: F=(1- 998! * h) / DET
x =1: y =0': k=0
FORt = h TO 4 STEP h
Xx=C*x+D*y

y =E*x+F*y
k =k +1
IF k MOD 1000 = 0 THEN
k =0
PRINT t, x, vy
END | F
NEXT
END

The problem arises from the fact that the eigenvalues of the matrix A appearing in Eq. 16 are
extremely different in size: 1 and 1000, respectively. To put it in somewhat different terms, we are
trying to calculate the matrix

_ —t/h
B=e™=1lim (1+Ah) " ;
h -0
if A is “large” in some sense, then we will need to go to values of h considerably smaller than

|A|[™" before we can expect to achieve the above limit.

This fact suggests a possibly better alternative, whose exploration we leave to the interested reader.
The idea is to subtract from the matrix A a term of low rank such that the difference is in some sense
“small”. Thus write

A = |alB| + R
where R is much smaller than A, and treat hR as a perturbation. We can approximate the vector

-1
|alhy the usual iterative method, and similarly for [B| . Then the computation of (1 + hA) is greatly
simplified and the solution closer to pure quadrature.

164 Boundary value problems

9. Boundary value problems

A typical problem arising in atomic, nuclear and particle physics is the need to determine the energies
of (quantum-mechanical) bound states of particles in potentials. Suppose such a potential is
spherically symmetric, and the particle nonrelativistic. Then the ordinary differential equation that
must be solved is"

2
o o

subject to the boundary conditions P(0) = O and lim (r) = O. The potential U(r) is assumed to

T
vanish faster than 1/ for large r, hence the solution manifestly has asymptotic behavior
P@r) - AK) e + B(k) €.

It is then obvious that the condition that Y represent a bound state is that K should satisfy the
transcendental equation

B(K) = 0.

The problem we are faced with, is how can we evaluate B(K) and seek its zeros, since we do not know
a closed-form expression for it?

Several algorithms have been developed for solving this conundrum. The so-called “shooting
method” requires us to choose a value of K, assume B(K) = 0, then integrate inward from some large
distance (that is, in the direction of decreasing 7). This will be stable, since the desired (exponentially
decreasing) solution will be increasing in magnitude. At the same time we integrate outward from
r=0 (starting with the appropriate small-r behavior). We then match the two solutions at some
convenient point14. Naturally they will not match, so depending on which logarithmic derivative is
larger, one increases or decreases K and tries again.

The algorithm we shall expound here is a very useful one described by Krell and Ericson . The basic
idea is to guess a value for K and integrate outward. We know that beyond the range of the potential
the solution of the (Numerov) difference equation will be

Y n h n
Aﬁ +d/2 - af +d/4f @ + Bﬁ +d/2 + af +d'/4f H
where a = Kh . The strategy is therefore to integrate outward to some distance where the potential
has become negligible, multiply the solution by

B = @ +dt/2 - aH+az/4H]/2 ﬁn

13. The potential U(r) is assumed to be appropriately behaved at r=0 and r=c0.
14. In fact, to avoid having to normalize the wave function, we match the logarithmic derivatives.
15. M.Krell and T.E.O. Ericson, J. Comp. Phys. 3 (1968) 202.

PHYS 551 Computational Methods of Physics 165
Chapter & Ordinary differential equations

in order to isolate B(K), and search for a zero. Krell and Ericson’s search method involves picking
three initial values of K, squaring the resulting values of B, and fitting a quadratic function to the
resulting three values in order to extrapolate to zero'®. That is, they write

df (K= K;) (K~ K3) (K= Kyp) (K= K3) (K=K;) (K=Ky)

oK) = BX(K) =

o,) t s =0
(K; = Ky) (K| —K3) (Ky = Ky) (Kp = K3) (K3 = Kyp) (K3 = Ky)

and solve the quadratic equation. This gives the next guess; at the next iteration the three values of

K are taken to be the new value and the two old values closest to it. Each iteration only requires one

new evaluation of B(K) since we keep the two values of B (corresponding to the two old values of K

that we retained).

10. Accurate numerical orthogonality

One way experimental physicists investigate complex systems such as condensed matter or isolated
atoms or atomic nuclei (or even, for that matter, isolated nucleons) is to measure their response to a
weak external probe. By weak we mean that if the Hamiltonian operator of system and probe is

H=Hy,+K+V
where H, is the hamiltonian of the isolated system, K that of the isolated probe, and V is their

interaction, then the amplitude for a transition from the initial state |n, k 0= |®, [T |X; Do the
n' k' O= |®, O |Xe Ossomething like

final state

&
My, = @Kk [Vin k0= [&r @) (7) Vi (F) o,(7),

where, typically,

df
Vi (1) = &7 xb (7)) VG =7) % (F).

If the probe states can be described as plane waves of definite momentum, the transition amplitude
neatly factorizes into

My, = V(g [&r o) (1)@, (r)elT,

whereq =k — k' .Thatis, the factor V (q) is generic, characteriing the experimental technique;
whereas the information we hope to obtain about the system we are probing is contained in the
response amplitude'’

16. The function B(K) presumably has a simple zero at the eigen-energy. Thus squaring it generates a posi-
tive quadratic function.

17. What is often measured is the inclusive response function, which is the squared modulus of the ampli-
tude, summed over all final states, and perhaps including an energy-conserving &-function.

166 Accurate numerical orthogonality

df .
i =Id3r¢z,(?)cbn(?)e”g.

Now, when the momentum transfer ¢ =0, the above amplitude vanishes for n’ #n because of the
orthogonality of the eigenstates of an Hermitian operator such as Hy . The problem is that when such
integrals are computed numerically, by numerical integration of differential equations for the
eigenstates, they often do not vanish, leading to spurious results at small q. The reason for the
non-orthogonality is that when we replace differential operators (acting on a continuum) with
difference operators (acting on a mesh), the latter may not be Hermitian, in the sense of maintaining
a symmetric inner product.

Let us elaborate the latter statement in the one dimensional case (that would apply if, say, the
Schroedinger equation was separable in spherical coordinates). After partial wave analysis the
response amplitude would involve terms of the form

S = J 4 01 0 (o)

the Hermiticity of the Hamiltonian is reflected in the fact that the matrix elements of the differential
operator

d 1d2
_ZdTHZ qJH (ljJ)

may, integrating by parts, be written

=J-0dTT2¢f(T)ErIZi,HZ d@()

= [dr SEVOT SR OF - el § 3 (r)% .

The contribution from the end points of the integral vanishes assuming the initial and final states
are well-behaved—which is certainly the case for the wavefunctions of potentials that are non-sin-
gular at r = 0 and which vanish sufficiently rapidly as r — 0.

When we naively calculate the initial- and final state wavefunctions by solving numerically the
appropriate differential equations, a strange thing happens. Since we solve on a mesh—typically one
of constant spacing—we would expect to evaluate the integral for S; using a quadrature rule of

uniform spacing, for example the trapezoidal rule. Thus we would write

= or Z %k ¢f(‘rk) %kq) im)E]o(qu) .

The problem is that typically the sum, evaluated at g = 0 is not zero, and in fact is not even very small.
What do we mean by “not very small”? For cases of interest the initial state represents a low-lying
bound state of the system, hence is rather smooth; the final state, conversely, is often a scattering

PHYS 551 Computational Methods of Physics 167
Chapter & Ordinary differential equations

state at fairly high energy, hence oscillates sinusoidally. The overlap intgral will therefore have
significant cancellations (this is an example of the Riemann-Lebesgue lemma in action) and be small
whether the states are truly orthogonal or not. This means that criterion of smallness should be
comparison of S;(¢q=0) with the plane wave Born approximation (that is, replacing r/(r) with

sin(Kr)). On this scale, we typically find that to make the above sum significantly smaller than the
PWBA requires solving the differential equation with an inordinately small mesh spacing &r.

Why should this be so? Investigation revealed that the wave functions, considered as eigenstates of
a difference operator on a mesh of non-zero spacing, were not truly orthogonal because the method
of solution had produced energy eigenvalues that were subtly in error. That is, if we want the
expression

N
My =or % %k ¢Tf(rk)% %kd)i(fk)g
k=0

to be the exact orthogonality relation for these states, for a given mesh, then we must enforce the

hermiticity of the difference operator A” on the discrete space. This amounts to insisting that the
boundary condition forr, = n & - oo is that bound state functions behave as

B = @ +dt/2 - aH+az/4H]/2 ﬁn.

If the energy eigenvalues are determined from this condition rather than the usual one employed by

canned Schroedinger equation solvers, namely ¢(r) — e, the overlap integral will be small, even
for fairly coarse meshes. That is, the solutions will be typically 5 to 10 orders of magnitude smaller
than the PWBA, depending on the numerical precision used in the solution. This will ensure adequate
precision in the computed response amplitudes.

On the following pages are BASIC and Forth versions of a program to solve the bound state
Schrédinger eigenvalue problem.

166 Accurate numerical orthogonality

)

BASI C program for finding bound state wave functions of the p. 1
" radial Schrddi nger equation

DECLARE SUB neke.y (B#)

DECLARE FUNCTI ON BE# (Bl#, B2#, B3#)

DECLARE FUNCTI ON u# (r#)

DECLARE FUNCTI ON Yfi n# (B#)

" test of numerical orthogonality in the Schroedi nger equation
DEFDBL A-Z

DI M SHARED yy(81), rr(81)

cLS

Bl =2 B2=5 B3 =7
BB = BE(B1, B2, B3)
PRI NT BB

CALL nake.y(BB)

FORi%= 0 TO 80 STEP 5
PRINT rr(i%, yy(i%

NEXT

END

FUNCTI ON BE (B1, B2, B3)
WH LE ABS(B3 - B1) > .0000001
RL = Yfin#(Bl): R2 = Yfin#(B2): R3 = Yfin#(B3)
al = R1 * (B2 - B3)
a2 = R2 * (B3 - B1)
a3 = R3 * (Bl - B2)
" B=(al * (B2 +B3) +a2* (Bl +B3) +a3 * (BL +B2)) / (al + a2 + a3) / 2
al pha = al + a2 + a3
beta = al * (B2 + B3) + a2 * (B1L + B3) + a3 * (Bl + B2)
gamma = al * B2 * B3 + a2 * Bl * B3 + a3 * Bl * B2
B = (beta - SQR(ABS(beta * beta - 4 * alpha * ganmm))) / 2 / al pha
" PRINT B1; “ "; B2; “ "; B3; “"; B
SELECT CASE B
CASE IS < Bl
B3 = B2: B2 = Bl: BL =B
CASE Bl TO B2
Bl = B: B3
CASE B2 TO B3
B3 =B Bl = (Bl +B2) / 2
CASE ELSE
Bl = B2: B2 = B3: B3 =B

(B2 + B3) / 2

END SELECT
VEEND
BE = B
END FUNCTI ON

PHYS 551 Computational Methods of Physics
Chapter & Ordinary differential equations

" BASIC program for finding bound state wave functions of the
" radial Schrdodi nger equation

SUB make.y (B#)
k2 =2 * 939 * B# / 197.32 "~ 2
h# = .2
h2# = h# * h# hk2# = h2# * k2
x =1+ hk2/ 2 - SQR(hk2 * (1 + hk2 / 4))
y0o =0 yl =h* h: yl =yl * yl
sum = 0
yy(0) 0: rr(0) =0: i%=0
FORr = h TO 16 STEP h
i%=i%+ 1
y = (2 +h2* (k2 + u(r))) * yl - yO
re(i%g =r
yy(i%p =y
yo =yl
yl =y
sum = sum+ vy * vy
NEXT
FORr =8 + h TO 16 STEP h
1% =%+ 1
Yy =Yy tX
sum= sum+ y * vy
yy(i%g =y
re(i%9 =r
" NEXT sum= 1/ SQR(sum* h)
FORi%= 1 TO 80
yy(i% = yy(i% * sum
NEXT
END SUB

FUNCTI ON u# (r#)
U# = -2.45 | (1 + EXP((r# - 4.1) [.5)) + 12# | r# | r#
END FUNCTI ON

FUNCTI ON Yfin# (B#)
k2 =2 * 939 * B# / 197.32 ~ 2

h=.2

h2 = h * h

hk2 = h2 * k2

x =1+ hk2/ 2 - SQR(hk2 * (1 + hk2 / 4))
r =0

y0o =0

yl = h2 * h2

FORr = h TO 16 STEP h

y = (2 +h2* (k2 + u(r))) * yl - y0
y0o = y1 * x
yl =y * x

NEXT

Yiin# =yl * yl
PRINT y1 * y1, B#
END FUNCTI ON

169

170 Accurate numerical orthogonality

FALSE [I F]
Programto solve the nonrelativistic Schroedi nger equation
for bound states (E < 0)
(C Copyright 1999 Julian V. Noble.

Perm ssion is granted by the author to

use this software for any application pro-

vided this copyright notice is preserved,

as per GNU Public License agreemnent.
This is an ANS Forth conpatible programw th the follow ng
envi ronnment al dependence

ANS FLOAT and FLOAT EXT wordsets

ANS TOCLS EXT wor dsets

Assunes separate floating point stack

Uses a FORmul a TRANs| ator for ease of porting

to other |anguages

[THEN]

MARKER -sch

include ftranlll.f \ I oad FORnmul a TRANsI at or
i nclude ansfalsi.f \ load root finder

fvari abl es (n--) 0DO FVAR ABLE LOCP

9 fvariables kappa alpha rO r dr psi psiO psil drsq
3 fvariables chi chi0O chil

coul (f: r --coul) r f! f" 0.417/r " ; \ pure Coul onb potenti al
U (f:r -- U \ Coul onb + nucl ear potentia

r F! r F@ r0 F@ F

I F f" 0.417*(3-(r/r0)~2)/r0 " F2/

ELSE f" 0.417/r "

THEN f" -2.414/ (1+exp(2*(r-r0Q))) " F+ ;
startup

f" ro = 1.2%*12~(1/3)"

f* dr = 0.1"

f* r =dr"

f* drsq = drn2"

f* psioO = 0" f" psil =dr"
f* chio =0" f" chil =dr" ;
psi _step
f" psi = (2+drsq*(U(r)+kappan2))*psil - psiO"
f" chi = (2+drsq*(coul (r)+kappa®2))*chil - chi 0"
f" psi0O = psil" f" psil = psi"
f" chi0 = chi1" f" chil = chi"
f" r=r+dr" ;

di spl ay r f@f. psilf@f. psiOf@f. chil f@fs.
f* psil / abs(chil) " fs. ;

PHYS 551 Computational Methods of Physics 171
Chapter & Ordinary differential equations

2 fvariables O dB NewB

beta (f: kappa -- B[k])
kappa F!
startup
psi _step
f" NewB = psi1/abs(chil)"
BEGN f" AdB = NewB "
psi _step
f* NewB = psi1l/abs(chil)"
f" abs(NewB-O dB)/ (NewB+d dB) " 1le-7 F<

UNTI L

NewB F@ ;
ener gy (f: -- energy) f* 20.71 * kappa™2" ;
wf \ calcul ate the wavefunction

startup

BEG N r F@10e0 F<
WH LE CR display psi_step
REPEAT ;

\ say use{ beta 0.2e0 1e0 1e-4)falsi energy fs.

172 Accurate numerical orthogonality

